
Virtual Private Network (VPN)
COSC301 Laboratory Manual

Over recent years the nature of the internet has changed. In the early days there was an
assumption that all the traffic was trusted. This is definitely not the case these days. There is a
move towards encrypting traffic, whether it is to/from various services (the 's' variants of the
protocols, for example https, smtps, etc.). In this lab we explore configuring a VPN. VPNs are
used to grant access to internal resources to a client connecting over an insecure network.

You have seen the term VLAN before now. VLANs are used to segment portions of the network
into logical (or broadcast) domains. For example, within a company, there may be a logical
network for the engineering department that is separate from the marketing department.
Yet they both share the same network infrastructure (i.e. the switches and routers of the
organisation).

VPNs on the other hand are generally used to link two (or more) networks1 together over an
insecure channel. For example, a remote worker might need access to some internal resource
(like a shared file server) from their home over the public internet.

To understand the difference, let's have a brief look at what happens to the packets as they
travel across the VPN. Normally, the client addresses the packet to the destination and routers
along the way will pass the packet closer to the destination. In a VPN, this packet is packaged
inside another that's directed to the VPN server. You can think of it as if you take a letter and
envelope, addressed to Bob, and place it inside another one addressed to Carol. You trust
Carol to unwrap her envelop and then pass the contained letter to Bob. Note the contained
packet (or letter) is encrypted by VPN.

In this lab we will simulate a remote worker using OpenVPN to connect to Server1 (their
trusted home server) so that they can ping to Client1 using it's internal address (i.e.
192.168.1.11). OpenVPN uses port number 1194. The firewall would have to open that port
in order for Server1 to provide the VPN service. If you would like more information about
OpenVPN, have a look at the OpenVPN Home Page [https://openvpn.net], specifically, the
Community Pages [https://openvpn.net/index.php/open-source.html]2.

1We can connect both whole networks (at the router level) as well as individual client computers.
2As is common trying to earn money from open source, they provide a preconfigured services and support for a fee.

1

https://openvpn.net
https://openvpn.net
https://openvpn.net/index.php/open-source.html
https://openvpn.net/index.php/open-source.html

Virtual Private Network (VPN)

Figure 1. Remote Client VPN setup

The above figure shows how the VPN works when used across the internet. Access to
services have been blocked by firewall rules and the remote client, therefore, cannot

access them. By tunneling the network traffic across an encrypted connection the
remote client is able to access the services as if they were on one of the LAN Clients.

1. Configure VirtualBox with the
Topology

Warning
You should take a snapshot of Server1 in order to undo these changes for future labs.

Figure 2. Interior Routing Network Topology

The above figure, Figure 2, “Interior Routing Network Topology”, shows the (eventual)
network setup we're going to achieve in this lab. At each end of the tunnel (the yellow tube)
a virtual device (tun0) is created automatically once the VPN is set up. It shows the topology
at layer 3 (the network layer or the IP layer) and also at layer 1 (the physical layer, i.e., the
cables), to help you to appreciate how the devices would physically connect to each other.
We'll explain more details later in the lab.

In this section you will be using VirtualBox to create, configure and connect the devices in
the network:

1. You should first create a NAT network called NAT network for VPN. You can do so by
clicking File → Tools → Network Manager.

2

Virtual Private Network (VPN)

2. You will create a temporary virtual machine for the remote host (like you did before for
Client2), connecting it and server1 appropriately to a NAT Network. This defines the
connection at the physical layer (layer 1).

3. The instructions of setting a NAT network for both Server1 and Remote are given in
Figure 3, “NAT Network settings”.

4. After booting the devices in the network, you will configure the software inside them to
build the network layer connection (layer 3).

Figure 3. NAT Network settings

The above figure, Figure 3, “NAT Network settings”, shows the NAT Network settings used
for this lab. Make sure both Server1 and Remote use the same name for the NAT network, i.e.,
NAT network for VPN. A NAT network allows guests to connect to each other via the internet.
It is as if both the server and the remote client were directly connected to the internet. This
means we don't need to worry about setting up NAT ourselves for Internet connection.

Since both Server1 and Remote will need to be connected to a NAT network as opposed to
just plain NAT3, as we did before, we need to reconfigure their adaptors.

Open VirtualBox preferences and navigate to the Network tab. Change Server1's Adapter 1
(the outside interface) so that it's attached to a NAT network as shown in Figure 3, “NAT
Network settings”. Do the same to Remote.

Boot into server1 and you should still be able to access the internet. Test this by installing
the openvpn and easy-rsa packages using sudo apt-get install openvpn easy-rsa.

While server1 is installing packages, if you haven't done so yet, start Client2 as the Remote,
booting from the live CD. This is just going to be a temporary machine that we will use to
3VirtualBox doesn't allow Virtual Machines on NAT to see one another by design.

3

Virtual Private Network (VPN)

test that we've configured the VPN correctly and so won't need a hard disk. Make sure that
Remote's Adapter 1 is connected to the same NAT Network.

You need to:

1. Screenshot
Make sure Server1's outside interface is connected to the NAT network and show
the IP address of the outside interface in a screenshot (we will need this later when
connecting to the VPN from Remote).

2. Screenshot
Show the IP address of Remote's Ethernet interface in a screenshot.

3. Screenshot
Finally, a screenshot showing Server1 and Remote can ping each other

2. Public-Key Infrastructure (PKI)
Central to the public key infrastructure is the idea of a certificate. Open your browser and
go to any SSL enabled website (such as Google [https://www.google.com]) and click on the
padlock symbol in the address bar and show the certificate. In safari (and I'm sure other
browsers) will show the chain of trust along with the details of the certificate. Expand the
details and peruse through and note any fields of interest.

Some important terms in the process:

Server
The server is where the OpenVPN connections terminate. It has generated a certificate
(called the 'issued certificate') that has been signed by a certificate authority.

Client
The client is the OpenVPN program running on the remote machine. It must have access
to the certificate of the certificate authority used to sign the server's issued certificate.

User
The user of the machine, knows their username and password.

When connecting to an OpenVPN server, both client and server mutually authenticate. The
purpose of this is to ensure that the client it connecting to the correct server and vice versa.
It is a similar process when SSH connections are initiated or when you visit SSL enabled
websites.

Once the connection has been started the server presents its issued certificate to the client.
The client can then verify that the server is the one its claiming to be. If the client determines
that the server is lying then the client will terminate the connection. The other way the client
will terminate the connection is if the server's certificate has been revoked (the location of a
'certificate revocation list' is included as part of the certificate authority's certificate).

If the client has a set of certificates then it presents them to the server. These certificates are
optional and depend on the setup of the client. The server then makes the same decisions

4

https://www.google.com
https://www.google.com

Virtual Private Network (VPN)

about the client's certificates, it checks that: they're signed by the same certificate authority
(if not, the connection is terminated); the client certificate is not on the revocation list
(otherwise the connection is terminated); the certificate is valid (hasn't expired and is after
the issue date).

If the client is configured to send user credentials to the server then it does so now. Once
the server has received the credentials the server checks that they're valid. Often this is
performed by a separate program or script. In our case we will be using Linux's Pluggable
Authentication Modules (PAM) which we will setup later on. If the checks fail, then the
connection is terminated.

Once we have authenticated, the configuration is exchanged and the tunnel is brought up.

An important part of any VPN is the authentication of remote clients. There are several
methods that can be used to authenticate a client to the server. In order from easiest (and
least secure) to more complex (and more secure) they are:

• No authentication

• Username/password

• Client/Server certificates

Self-assessment
1. While it is a small distraction to talk about web certificates, I'd like you think about

how the web browsers manage the certificate authorities. How do they end up in your
browser? Who makes the decision? How can someone get their certificate authority
trusted in the browser? What happens if the authority mis-issues some certificates?

2. Write some brief notes on the advantages and disadvantages of each of the
authentication methods described above (and any others you may be able to find). To
focus the notes, think about why the shared secret is bad, and why the client/server
certificates are good. Is there a better method?

3. In the next section we are going to setup our own public key infrastructure. Before we
start, briefly define the following PKI-related terms:

• Certificate Store

• Certificate Authority (CA)

• Registration Authority

• Central Directory

• Certificate Management System

• Certificate Policy

• x509 Certificate

• Public Key

• Private Key

5

Virtual Private Network (VPN)

3. Server Certificates
Now that you understand the role PKI plays, we need to setup our own so that we can issue
certificates as needed. By the end of this section we will have created our own certificate
authority, along with a public/private key pair that clients will use to identify the server.

Caution
At this point it's worth noting that each of the certificates created below will be
cryptographically unique. This means that (like the SSH keys you would have
created in an earlier lab) there is no way to recover a public key from a private
one (and vice versa). Once you start signing certificates with one CA, you can't
suddenly switch to another. You will have to start again from this point.

The easy-rsa package, that we installed previously, contains a set of scripts that do a lot of
the heavy lifting. Run make-cadir ~/openvpn-ca and change into the directory ~/openvpn-
ca. This is our working directory and makes it easier to keep the generated files separated
other (personal) files.

You will see various scripts and some configuration files. The vars file sets up various
variables used during the process of certificate generation. We have included some
annotations in the listing below. You will need to edit vars as suggested below.

Take note of this warning!
WARNING: init-pki will do a rm -rf on this directory so make sure you define
it correctly! (Interactive mode will prompt before acting.)
The setting below create the pki directory under the current working directory.

set_var EASYRSA_PKI "$PWD/pki"

Define directory for temporary subdirectories.

set_var EASYRSA_TEMP_DIR "$EASYRSA_PKI"

These are the default values for fields
which will be placed in the certificate.
Don't leave any of these fields blank.
set_var EASYRSA_REQ_COUNTRY "US" Change this to "NZ"
set_var EASYRSA_REQ_PROVINCE "California" Change this to "Otago"
set_var EASYRSA_REQ_CITY "San Francisco" Change this to "Dunedin"
set_var EASYRSA_REQ_ORG "Copyleft Certificate Co" This is the organisation -- like Google, Otago University, etc.
set_var EASYRSA_REQ_EMAIL "me@example.net" In the real-world you should use a legitimate address.
set_var EASYRSA_REQ_OU "My Organizational Unit" Something like the Help Desk, or Research and Development.

set_var EASYRSA_KEY_SIZE 2048

The default crypto mode is rsa; ec can enable elliptic curve support.
Note that not all software support ECC, so use with care.
Choices for crypto alg are: (each in lower-case)
* rsa
* ec
* ed

set_var EASYRSA_ALGO ec

In how many days should the root CA key expire?
set_var EASYRSA_CA_EXPIRE 3650 This is 10 years

6

Virtual Private Network (VPN)

In how many days should certificates expire?
set_var EASYRSA_CERT_EXPIRE 825 For the certificates generated by these scripts

Cryptographic digest to use.
Do not change this default unless you understand the security implications.
Valid choices include: md5, sha1, sha256, sha224, sha384, sha512

set_var EASYRSA_DIGEST "sha512"

Tip
The note about KEY_SIZE in the listing above refers to 'DH' -- Diffie-Hellman.
If you're interested in how two people can establish a shared secret (to use for
encryption) over an insecure channel (such as the internet), have a look at the
Diffie-Hellman key exchange.

Tip
You may be wondering why we need to set parameters for ORG and OU and
all that stuff. Well, its related to the ideas of centralised account management
as used in large organisations.

Now that we've configured the certificate variables, we need to generate the certificate
authority. Run the following commands:

mal@server1:~/openvpn-ca$ ln -s openssl-easyrsa.cnf openssl.cnf
NOTE: If you run ./easyrsa init-pki, it will be doing a rm -rf on /home/mal/openvpn-ca/pki
mal@server1:~/openvpn-ca$./easyrsa init-pki
mal@server1:~/openvpn-ca$./easyrsa build-ca

...
Enter New CA Key Passphrase: You need the passphrase to keep the private key secure.
Make sure you remember it. It will be needed when openvpn is started.

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called as Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Many values are obtained from the vars file we edited before. Just hit enter.

Common Name (eg: your user, host, or server name) [Easy-RSA CA]:

CA creation complete and you may now import and sign cert requests.
Your new CA certificate file for publishing is at:
/home/mal/openvpn-ca/pki/ca.crt

Now that we've generated the certificate authority, we need to create a public/private key
pair that the clients use to authenticate the server.

Important
The following command is different to the previous one -- take care!

mal@server1:~/openvpn-ca$./easyrsa build-server-full server1

7

Virtual Private Network (VPN)

...
Enter PEM pass phrase: Passphrase to protect the private key.

...
You are about to be asked to enter the passphrase you used to protect ca.key
under pki/private
Enter pass phrase for /home/mal/openvpn-ca/pki/private/ca.key:

Certificate is to be certified until July 15 22:20:16 2025 GMT (825 days)

Write out database with 1 new entries
Data Base Updated

You can find server1.crt under pki/issued and server1.key under pki/private

Now we generate the DH parameters which will be used to generate a shared secret for
secure communication between the server and a client after the authentication process is
successful.

mal@server1:~/openvpn-ca$./easyrsa gen-dh

...
Generating DH parameters, 2048 but long safe print, generator 2
This is going to take a long time
...
DH parameters of size 2048 created at /home/mal/openvpn-ca/pki/dh.pem

You should now have the following files which are needed by the OpenVPN daemon.

ca.crt
The certificate authority's certificate, contains the public key of the CA.

server1.key
The private key used by the server.

server1.crt
The certificate used by the server, contains server1's public key and a digital signature
from the CA.

dh.pem
The Diffie-Hellman exchange parameters.

Now we have all the certificates and other paraphernalia that we need in order to setup the
VPN. The final task is to copy the keys to the /etc/openvpn/ directory, e.g. run sudo cp ca.crt
server1.key server1.crt dh.pem /etc/openvpn/. Note these keys are in various directories.

Finally, generate a secret key for extra security of the communication between Server1 and
Remote.

mal@server1:~/openvpn-ca$ sudo openvpn --genkey secret /etc/openvpn/ta.key

Over the next few sections, we are going to walk through the following steps to incrementally
build the VPN.

4. Initial Server Configuration
During this process we are going to use a separate network 10.8.0.0/24 for the remote clients
to use as VPN. This is deliberately chosen to be different to the existing LAN network. The

8

Virtual Private Network (VPN)

main reason is that it helps to keep the different networks logically separate (and it makes it
more obvious where the traffic is flowing). When we come to the IPv6 addresses we will, again,
use a separate network (we used https://www.ultratools.com/tools/rangeGenerator, and set
the Global ID to '6b410435ce' and Subnet ID to 'ffff' -- to make it as visually different from
the existing network as possible.).

The networks used by the server must be different to the network that the remote client is
connecting through. If it's not, then the routing won't work properly. This is often a cause
of conflicts and issues.

Use sudo cp /usr/share/doc/openvpn/examples/sample-config-files/server.conf /etc/
openvpn/server.conf to copy the sample server.conf provided by the maintainers of
openvpn. Read through the file and edit/add/adjust the file to match the options below leaving
the other options at their default value. (We have removed the comments for brevity---you
should be sure to understand what the options are doing).

port 1194
proto udp

dev tun

ca ca.crt
cert server1.crt
key server1.key
dh dh.pem

server 10.8.0.0 255.255.255.0 See the note below.

keepalive 10 120

tls-auth ta.key 0

cipher AES-256-CBC

This is where we're configuring the username/password authentication options.
verify-client-cert none
plugin /usr/lib/x86_64-linux-gnu/openvpn/plugins/openvpn-plugin-auth-pam.so login

port …
The port to listen on, 1194 is the default for OpenVPN.

proto …
The protocol to use to encapsulate the network traffic. It doesn't matter that the traffic
going across the VPN is UDP or TCP.

dev …
The virtual network device to use for the VPN tunnel. It can be one of tap or tun, which
one depends on whether you want to bridge or route the VPN to the LAN respectively.
(Or if the VPN needs to handle non-IP traffic -- in which case you need to use tap).

For our use case we are setting up a separate, routed, network with only IP-based traffic,
hence the use of tun.

ca, cert, key, dh
The PKI files that we created previously.

server …
The network addresses of the VPN that the server is going to create. Because we're
setting up a routed network, we need to use a different network to any of the existing

9

Virtual Private Network (VPN)

connected networks (viz. something that's not 192.168.1.0/24 or 10.0.2.0/24). The value
here is the default value for this option.

keepalive 10 120
This is a shortcut to specify two options and the behaviour differs a little depending on
where OpenVPN is running. For the server, it'll send a ping if there's been no activity for
10 seconds, and if it fails to receive a response in 120 seconds restart the connection4.

tls-auth ta.key 0
This is an extra security beyond that provided by SSL/TLS. It can help block DoS attack
and UDP port flooding. The server and each client must have a copy of this key. This file
is secret and read-only by the owner. The second parameter should be 0 on the server
and 1 on the client (Remote).

cipher AES-256-CBC
This is the selected cryptographic cipher. This option must be specified in the openvpn
command on the client side or in the client config file.

verify-client-cert none
This makes the client certificates optional as we are only authenticating by username/
password, and don't want to authenticate the client too. To make use of this, the client's
certificates would need to be signed by the same CA (in the same manner as the server
certs were).

plugin …
This tells OpenVPN to use PAM to perform the username/password checking. Briefly,
PAM allows other applications to check authentication against various options. In this
case, we use the 'login' option with the options supplied to PAM from the OpenVPN client.

Bridging vs Routing
Bridging is where the LAN and VPN clients share the broadcast domain, and
would allow the existing DHCP server to provide addresses to the VPN clients.
The other consideration on this front is if there are any services that require
neighbour discovery (some features of Windows servers need this).

Routing on the other hand allows you to segment the VPN traffic from the LAN
and makes management of firewall rules easier. We shall see an example of this
in the Firewalling lab.

Tap vs Tun, performance issues
Tap devices: typically behave like a real network adapter (despite it being
virtual); can transport any network protocol; work in layer 2 (so ethernet
frames are passed over the VPN). However, they cause more broadcast traffic
across the VPN; add ethernet frame overhead; suffers from poor scalability;
and cannot be used with Android or iOS devices.

Tun devices: have lower overhead, only transports layer 3 traffic (IP). However,
broadcast traffic is not transported; older versions of OpenVPN lacked support
for IPv6; and cannot be used in bridges.

4In the documentation, they use the example of keepalive 10 60, and say the restart happens in 120 seconds -- maybe
there's a typo.

10

Virtual Private Network (VPN)

We're now ready to start the service using systemd, systemctl start
openvpn@server.service. This looks a little different from other service start commands
you would have seen before. We can have multiple VPN services defined each with their own
configuration file. This command uses the token after the '@' to figure out which configuration
file to use when starting the service. Check /var/log/syslog to make sure that the service
started properly.

Note: Make sure you follow the instructions to unlock the private key of server1 with the
passphrase you entered before; otherwise the openvpn server won't start.

Screenshot
Take a screenshot showing the log information or status of the
openvpn@server.service VPN service.

Once you've successfully started the service, have a look at the output of ip addr show
and route -n. You should see something resembling the following. Note that a new gateway
10.8.0.2 is generated for the VPN in addition to the server's address 10.8.0.1.

mal@server1:~$ ip addr show
1: lo:
 ...
2: outside:
 ...
3: inside:
 ...
5: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast ↩
 state UNKNOWN group default qlen 100
 link/none
 inet 10.8.0.1 peer 10.8.0.2/32 scope global tun0
 valid_lft forever preferred_lft forever
mal@server1:~$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.0.2.1 0.0.0.0 UG 0 0 0 outside
10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 outside
10.8.0.0 10.8.0.2 255.255.255.0 UG 0 0 0 tun0 This is new...
10.8.0.2 0.0.0.0 255.255.255.255 UH 0 0 0 tun0 ... as is this.
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 inside

We now need to connect the remote client. For that, the remote client needs to have a
copy of the ca.crt. On Remote, use SCP to copy the file across scp mal@10.0.2.15:/etc/
openvpn/ca.crt ~/.. This copies the certificate of the certificate authority (yes, this sounds
strange but correct and precise) at /etc/openvpn/ca.crt from Server1 to our home directory
(preserving the filename).

We need also copy ta.key from Server1 to Remote using scp. Since ta.key is read-only by
root, we will need to work out a way to copy the file to Remote. Once it is copied to Remote,
the file should be changed back to read-only by the owner. This problem is left for you to
solve by yourself.

We've now got all the information the remote client needs to be able to connect to the vpn.
Install the openvpn package on Remote and connect the VPN using sudo openvpn --remote
10.0.2.15 --dev tun --auth-user-pass --ca ca.crt --client --remote-cert-tls server --tls-
auth ta.key 1 --cipher AES-256-CBC --auth-nocache under the home directory where
ca.crt and ta.key are copied. You should see the status of the client's connection in the
terminal. Use a different terminal to do the assessment below.

11

Virtual Private Network (VPN)

Assessment
1. What address ranges do you expect to ping when the VPN is connected? What subnets

can you actually reach? Is this different from what you expected? Why or why not?

Screenshot
Take a screenshot showing which hosts you can reach and which you cannot.

2. Examine the routing table on the client before and after connecting to the VPN. What
new routes are added? What do you notice about the metrics? Why do you suppose
this is?

3. Run sudo tcpdump -i enp0s3 on Remote. This examines the traffic on the ethernet
interface and emulates someone performing a man-in-the-middle (MITM) attack. Run
the following two commands on Server1 to ping Remote, and compare and contrast
the tcpdump output.

• ping -c 1 10.8.0.6

• ping -c 1 10.0.2.4

What implications does this hold for (free) public VPN servers?

5. Routing VPN Traffic (optional)
At the end of the previous step, the remote client can only ping server1's VPN address. In
this section we're going to adjust the configuration so that the remote clients traffic is routed
properly.

We need to make a couple of small modifications to /etc/openvpn/server.conf, these are
presented below. As previously, modify the configuration to take these tweaks into account.

push "redirect-gateway def1"
script-security 2
learn-address "/etc/openvpn/learn-address"

push …
This tells the server to give any of the connected clients that parameter. In this case it
tells the clients that all their traffic should be sent through the vpn.

script-security …

learn-address …
While the push directive can get the traffic from the VPN onto the LAN, we need to be
able to get the LAN traffic onto the VPN. I'll discuss this in more detail below.

This works well to get the VPN traffic to the LAN clients, but the LAN clients don't know how
to respond to the traffic from the VPN --- there is no route. Thelearn-address ... script
handles this case for us, so that the server acts as a proxy for the vpn clients.

You should be familiar with ARP (or Neighbour Discovery), but for the sake of completeness,
I'll describe the process here. When a LAN client wants to send a packet to a vpn client, it

12

Virtual Private Network (VPN)

performs its neighbour discovery protocol (ARP in IPv4), where it asks "who has 10.8.0.1?".
Because server1 is acting as a proxy, server1 will respond with its MAC address, and
eventually route the traffic through the vpn to the correct host.

Now that we know what needs to happen with the learn-address ... stanza. We have
created a simple script to add the proxy-ing. This script should be placed in /etc/openvpn/
learn-address, owned by root, and executable.

#!/bin/sh
action="$1"
addr="$2"

logger "learning: $action $addr" Show something in the syslog

case "$action" in
 add | update)
 ip neigh replace proxy "$addr" dev inside
 ;;
 delete)
 ip neigh del proxy "$addr" dev inside
 ;;
esac

This script is responsible for adding and removing routes for each of the remote devices when
they connect and disconnect respectively5. The script adds/removes clients individually, we
could have set it up so that the whole VPN subnet was routed to server 1, and we wouldn't
have needed this script, however we wanted to demonstrate this feature.

Disconnect remote1, restart the service (checking syslog to make sure it started properly)
and reconnect remote1. If you cannot connect, check the syslog on server1 to see if there
are any problems with the service.

Screenshot
Take a screenshot showing which hosts you can reach and which you cannot.

6. IPv6 Additions (optional)
Now that we have a functioning IPv4 VPN, we need to setup the same for IPv6. We need
to make a couple of small modifications to /etc/openvpn/server.conf, these are presented
below. As previously, modify the configuration to take these tweaks into account. Disconnect
the remote client, restart the service (checking the logs) and connect the remote client again.

tun-ipv6
push tun-ipv6
server-ipv6 fd6b:4104:35ce:ffff::/64
push "route-ipv6 fd6b:4104:35ce:0::/64" We have added the '0' after the 35ce to make it clear that we're routing a different subnet.

Screenshot
Take a screenshot showing which hosts you can reach and which you cannot.

1. Run tcpdump on remote1's enp0s3 interface. Do you see any IPv6 traffic when pinging
server1's IPv6 address? Is this what you would expect? What's happening?

5Fortunately it requires no changes to work with IPv6!

13

Virtual Private Network (VPN)

7. Client-side Configuration and DNS
(optional)
On remote, we've been using the command line to manage the starting and stopping of the
OpenVPN client. It's time we move this to a configuration file.

Configuration File
client
dev tun
proto udp

comp-lzo

remote 10.0.2.15 1194 This is the public address of the server

nobind
persist-key
persist-tun
ca ca.crt

auth-user-pass

The following lines are to help sort out DNS---which we'll do next.

resolv-retry infinite
script-security 2
up "/etc/openvpn/update-resolv-conf"
down "/etc/openvpn/update-resolv-conf"

Screenshot
Take a screenshot showing which hosts you can reach and which you cannot.

This section is optional. It is here so we can get make sure that the services are setup properly.
If you have completed the DNS Lab, we strongly suggest that you complete these steps.

In the DNS lab you created an access list that restricted DNS queries to the local networks.
Because we have created two new subnetworks (one for each IPv4 and IPv6), we need to
allow queries from these hosts.

Edit the /etc/bind/named.conf.options, by creating a new ACL and add it to the allow-
query and allow-recursionstanzas. Restart the bind9 service in the usual way.

acl "clients" {
...
}
acl "vpn" {
 10.8.0.0/24;
 fd6b:4104:35ce:ffff::/64;
};
options {
 ...
 allow-query { "clients"; "vpn"; };
 allow-recursion { "clients"; "vpn"; };
 ...
};

14

Virtual Private Network (VPN)

Now the final remaining step is to push the dns server to the vpn clients. Edit /etc/openvpn/
server.conf to include the push "dhcp-option DNS 192.168.1.1". Disconnect remote,
restart the service (check the logs), and reconnect the remote.

You should be able to resolve all the local (internal) DNS names we defined previously, as
well as check that they're reachable via ping.

Screenshot
Take a screenshot showing that you can resolve the internal DNS names from the
remote client. Take another screenshot to show that you can ping (by name) server1.

8. Final Words
In this lab we have setup and configured a VPN which allows remote clients to appear as if
they were on the local LAN. This is a powerful (and useful) tool that is used to ensure the
integrity of private data being transferred across an untrusted network.

We've been using username/password authentication to allow clients access. As an optional
exercise, you could extend this by using the PKI infrastructure we setup at the start to
generate certificates for the clients.

15

