

COSC301 Lecture 5

802.11 Wireless Networking

Zhiyi Huang Computer Science University of Otago

Some IEEE 802 Standards

- 802.1: Bridging and Management, e.g. 802.1X
- 🖗 802.3: Ethernet
- § 802.11: Wireless (WiFi)
 - § 802.11b, 802.11a, .11g, .11n, .11ac, .11ad
- 802.16 Broadband Wireless MAN (WiMAX)
- 802.15.4: Zigbee, wireless sensor networks
- 802.15.1:bluetooth
- http://standards.ieee.org/getieee802/

802.11 Family

✓802.11b 11Mbps, 2.4GHz, Kick-started Wi-Fi technology, ~30m indoors.

802.11a 54Mbps, 5Ghz, Less common than 11g, but technically superior.

802.11g 54Mbps, 2.4GHz, still very very common Compatible with 11b. Mixed or exclusive...

802.11n 540Mbps (typ. 200Mbps), 2.4+5GHz, current choice Max speed hard to determine, ~50m indoor, MIMO Supports a/b/g or 'Greenfield' (exclusive) Also supports extensions for priority, multimedia

802.11ac 1Gbps, 5GHz, 'draft' devices available now 802.11ad 7Gbps (typically less), 2.4+5+60GHz, "WiGig"

Structural Overview

802.11 Terminology

AP Access Point

- STA Station
- BSS Basic Service Set
 - A group of stations that communicate with each other and an access point, in an area called a basic service area.

802.11 Terms (cont.)

ESS Extended Service Set

- Multiple BSSs can be linked using a distribution system to create an Extended Service Set
- SSID Service Set Identifier
 - The MAC address of an AP
- ESSID Extended Service Set Identifier

The name of the network

802.11 Terms. (cont.)

Wireless Distribution System (WDS)

- Backbone of multiple APs, and the inter-AP communication. Usually Ethernet, may be wireless.
- 802.11F defines the Inter Access-Point Protocol (IAPP), but use is limited.

[₩]Mode

- Either Independent (Ad-Hoc) or Infrastructure (AKA Managed).
 - Ad-Hoc BSS is termed an IBSS.

Infrastructure

- Requires an AP to associate to
- Higher layers of networking stack configured using the same methods as you would for any wired Ethernet station
 - Most commonly DHCP is used, as wireless nodes are generally mobile devices
 - Further security measures may be employed to manage security risks associated with wireless

Ad-Hoc

Nodes in an Ad-Hoc network communicate without any need for network infrastructure such as an AP, or network level services such as DHCP, DNS

ZeroConf protocols to manage IP addresses etc.

	Open Internet Connect				
	1 production	terre and the second			
Computer to Computer					
Please enter the	followi	ing information to creat	e a		
Computer to Co			cu		
Name: G	albreith				
Channel: 🛛	utomati	ic (11)	÷		
	Enable	encryption (using WEP)			
Password:					
Confirm:					
	-	more compatible)			
The WEP k	28-bit	tered as exactly 5 ASCII	_		
characters or 1	0 HEX dig	gits.			
Hide Options		Cancel OK			

11:34 PM 💵

()

Use Interference Robustness

DV

Turn AirPort Off

Create Network...

AirPort: On

✓ tlangel

Other...

Signal Strength

Signal Level

Strength of the received signal

Strength of the noise

Signal to Noise ratio

Transmit Power How loud we speak

Receive Sensitivity How well we can hear

Decibels (dB)

A relative, logarithmic quantity used for easily working with antennas

≓+3dB ≈ ×2

So a 10dB antenna would boost a signal a bit more than 2×2×2=2³=8 times

 \leq 32dB parabolic: 2¹⁰ < 32dB < 2¹¹ = 1024–2048 times

dBi is dB relative to the isotropic radiator, used for rating antennas

A theoretical antenna that radiates equally well in all directions

dBm (dB relative to 1 milliwatt) or just mW is often used for rating transmit power for transmitters

Finding a Network

Apple WPA2 St Martin St Martin 24 Mbps		
Ş	A	Description
40	WPA	St Martin Wireless [
32	WEP	DLINK [D-Link]
		i
	Mart (2) 40	Martin

ch 1 ch 6 Ch 11 Ch 11 St Martin Wireless Passive scanning listens for AP beacons
Listens on each channel for a certain dwell time

Won't detect closed/hidden networks

Active scanning sends Probe Requests

On each channel

Requests a particular ESSID or "any"

Produces a scan report with discovered ESSIDs

Finding a Network (cont.)

- ...or passively scan in monitor mode
- Some wireless NICs can allow the station to see all wireless frames on the channel
 - Getting hard to find, but Prism II chips can do this, as can others. Useful tool for wireless admins.
- Used by products such as Kismet or AirSnort
- Commonly used for Wardriving, etc.
- Wonitor mode is not needed for clients (stations).

Authenticating

Authenticates user or machine before being able to use the network

- Consumer devices provide at least MAC filtering
 Valid MAC addresses can be observed, and changed
 Modern enterprise networks often have username/
 password (802.1X & RADIUS)
 - ... or there may be no authentication
- You could perform authentication at a higher layer (replacing or supplementing wireless authentication)
 - e.g. requiring clients to connect and authenticate to a VPN

Security Prot. Overview

MAC Filter List

Wot a security protocol

- Second Access Control by (changeable) MAC address
- ACLs can be stored centrally using RADIUS
- WEP (Wired Equivalent Privacy)

Wost common denominator

- Winimal protection (it's really quite broken)
- Pre-Shared Key (PSK)
 - Large amount of work to change

WEP Configuration

Cancel OK
 WEP of any key-size is easily broken in under a second after 5-10 million packets [Aircrack]
 Can be given in either HEX or ASCII
 Note that "64bit"=40bit, and "128bit"=96bit
 <u>http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html</u>

WPA

Wi-Fi Protected Access

Subset of 802.11i that was released when WEP flaws became a barrier to adoption

WPA Personal

- WEP with short-lived changing keys
 - Temporal Key Integrity Protocol (TKIP)
 - Different key per user/session/packet
 - Performance cost if not done in hardware
- Reported problems with native Windows XP

WPA Enterprise, 802.11i

WPA Enterprise

§802.1X for user authentication

"Port" based authentication framework

- Extensible Authentication Protocol (EAP)
- Requires RADIUS backend
- §802.11i—WiFi Alliance calls it WPA2

Section Standard (AES) cryptography

WPA Personal

The password or pre-shared key is the same for everyone

How much effort would be required to change it?

Wireless Security:	WPA Perso	nal 🛟				
Password						
Verify Password:						
If you choose to enter a password, it can be 8 to 63 ASCII characters. If you choose to enter a Pre-Shared Key, it must be 64 hexadecimal characters.						
Encryption Type:	ТКІР					
Group Key Timeout:	60	minutes				
? Hide Options		Cancel OK				

WPA Enterprise

Wireless Security:	WPA Enterprise		÷
Primary RADIUS Server _			
IP Address:		Port:	•
Shared Secret:			
Verify Secret:			
Secondary RADIUS Serve	r		
IP Address		Port	•
Encryption Type:	TKIP		
Group Key Timeout:	60 min	utes	
? Hide Options	C	ancel OK	

Channel Layout

- 13 channels in total (1, 2,...,13)
- Keep APs with overlapping coverage at least three channels apart
- Hex-pattern layout for nonoverlapping channels
- But don't forget that space is 3D
- Limit number of nodes
 to about 30 per AP

Locating Access Points

- Section Considerations
 - Backbone network connection
 - Power supply
 - AC supply
 - Power over Ethernet (PoE) modules or switch
 - Desired coverage area
 - 🖗 AP-antenna distance (loss)
 - Environmental conditions
 - 👾 Wind disturbance; Rain; Sun (heat)

Antenna Types

Omni-directional High-gain Omni Diversity antennas Directional Panel, Yagi, Parabolic Shown is a Wave-Guide "cantenna" Trade off polar coverage for distance Sometimes advertised with its azimuth and elevation to show coverage area

n

Omni-directional

AP with antenna diversity

7dBi High-Gain Omni

Directional Antennas

10dBi Panel

19dBi Parabolic

DIY Antennas

Antennas are pretty simple, thus easy to make

The Pringles can antenna that made DIY Wi-Fi popular

Frying scoop parabolic

NZ innovation, using cheap USB Wi-Fi sticks and even cheaper Chinese cook-ware

www.usbwifi.orconhosting.net.nz/

- Cameron made this one
- Intended to get ~12dBi

Coffee Can Waveguide

The diameter is the important dimension, with enough length

Parabola from cardboard and foil.
 Can be used to boost signal for a simple dipole.

Security Issues

Bandwidth stealing You are responsible for their actions Access to wired network and other wireless nodes ARP Poisoning Wan-in-the-middle attacks also of wired network if not routed ₩AP Spoofing

Uses of Wireless

X

X

X

- When cables are a hassle/liability
- Fransient networks
- Hotspots
- Backup links
- Reliability
- Security (can be managed)

References

802.11 Wireless: The Definitive Guide

- Matthew S. Gast; O'Reilly & Associates ISBN: 0-596-00183-5
- 802.11 Security

Bruce Potter & Bob Fleck; O'Reilly & Associates ISBN: 0-596-00290-4