
Scripting
COSC 301 Lecture

Zhiyi Huang
Computer Science
University of Otago

Outline

Purpose, History

Unix scripting

Unix failings

Other solutions

Scripting is...

‘Easier’

Glue

Weakly typed

Interpreted

Who scripts?

Users

Power users

Administrators

Developers

Testers

Developments
Job Control Language

1960s Unix pipe

1993 Applescript

2005 Automator

2006 Windows PowerShell

Available shells in Linux

bash, sh, tcsh, csh; use cat /etc/shells

Unix Shell Scripting

Unix Philosophy

Write programs that do one thing and
do it well. Write programs to work
together. Write programs to handle
text streams, because that is a
universal interface.

Doug McIlroy  
Inventor of the | construct

./hello
#!/bin/sh  
echo “Hello, World!”
$ chmod +x ./hello  
$./hello  
Hello, World!  
$ sh ./hello  
Hello, World!
echo -e “no newline\c”

No extension

The correct UNIX way

Another example
#!/bin/bash
clear
echo "This is information provided by mysystem.sh. Program starts
now."
echo "Hello, $USER"
echo
echo "Today's date is `date`, this is week `date +"%V"`."
echo
echo "These users are currently connected:"
w | cut -d " " -f 1 | grep -v USER | sort -u
echo
echo "This is `uname -s` running on a `uname -m` processor."
echo
echo "This is the uptime information:"
uptime
echo
echo "That's all folks!"

#! “Sh-Bang”
First line
#!/bin/sh

#!/usr/bin/perl -wnl

#!/usr/bin/env python

Default is /bin/sh
SetUID not honoured
is also used for comments

Design Patterns

Source: ls
read from file and write to stdout

Filter: sort
read from stdin and write to stdout

Sink: less
read from stdin and write to file

“Cantrip”: rm
do something but return nothing

Compiler: tar
read from file and write to another file

Good scripts
A sensible name

don’t clash with existing commands and
programs

No errors
Perform the intended task
Have a clear logic
Efficient, no unnecessary work
Informative, notifying users about what it is
doing
Reusable

BASH basics

Files read by bash

/etc/profile, .bash_profile, .bashrc

depending on login, interactive, non-interactive, or use
sh directly

Built-in commands like cd and eval, exit, exec, export, …

Three types of commands

built-in, function, executable programs

debugging a script: bash -xv script_file
Some self-study required. Read Bash Beginners Guide

I/O Channels

stdin prev pipe or terminal 
 ^D to ‘end-of-file’

stdout next pipe or terminal

stderr not piped

FD 0,1,2 respectively

Redirection
command > file-overwriting

command >> file-appending

command 2> file

redirect stderr to file

echo “Warning to stderr” >&2

redirect stdout to stderr

echo “To black hole” 2> /dev/null >&2

command < f1_in > f2_out 2> f3_err

| “Pipe”

5 biggest dirs in the current dir
du -xkd 1 \  
 |grep -v "^[0-9]*[[:space:]]*\.$"\  
 |sort -rn | head -5

All I/O via kernel, slow

Variables
varname=value Assignment 
no spaces around ‘=’

$varname Deference
Global and local variables

Seen by subshell/child processes if 
export PATH=$HOME/bin:$PATH

Beware white-space! 
varname=”foo bar”

Interpolation

‘non-interpolated string’

`command`

“interp. string $varname `command`”

foo=`command \`command\``  
foo=$(command $(command)) (Bash specific)

html=”$1”; txt=”${html:%.html}.txt”  
links -dump “$html” > “$txt”

Conditions—if

if␣[␣$# -lt 2]; then  
if-less-than-two-arguments  

elif␣[␣\(␣“$1”␣=␣‘foo’␣\)␣-a␣\  
 \(␣-r␣/etc/foorc␣\)␣]; then  
if-arg1-is-foo-and-foorc-is-readable  

else  
if-otherwise  

fi

if␣!␣grep -q ...; then  
if-grep-did-not-find  

fi

see test(1)

Conditionals—case

case “$fo_proc” in  
‘fop’)  

command;;  
‘xep’)  

command1; commandN;;  
*)  

default-command >&2  
exit 1;;  

esac

Loops—for

for i in foo bar baz  
do  
echo $i  
done

((... ; ... ; ...)) is a Bash-ism  
 
for ((i=128; i<160; i++)); do  
printf “ip%03d\tA\t192.168.1.%d\n” $i $i  
done

Loops—while

ls | while read filename  
do  
do stuff with “$filename”  

done

while true  
do  
infinite loop body  

done

Subshells

139.80.32.2 - - [26/Mar/2007:17:28:34 +1200] ↩ 
"GET /path/to/file.html HTTP/1.0" 304 -

(echo "IP Freq";  
 (cat access_log;  
 gzcat access_log.*.gz)  
 | cut -d’ ‘ -f1 | sort | uniq -c  
 | sort -rn | awk '{print $2,$1}'  
) | column -t

getting ugly, start making functions

Arithmetic

expr 2 * 8  
16

echo $((2 * 8)) Bash-ism 
16

echo 'scale=2; 1/3' | bc  
.33

echo 'ibase=10; obase=2; 192' | bc  
11000000

Sed and Awk

Read a book!

Regular expressions!

Takes a while to learn

A few recipes are useful

sed—Stream Editor

Delete header on first line 
sed -e 1d

Disable FTP service in inetd 
sed -e ‘s/^ftp/#&/’ < inetd.conf > \  
 inetd.conf.new  
mv inetd.conf{,~}; mv inetd.conf{.new,}

What requests got a 404? 
gzcat access_log.*.gz | sed -ne '/ 404
[0-9]*/s/^.*"[A-Z]* \(.*\) HTTP\/[0-9.]*".*
$/\1/p'

awk

Re-order fields 
echo 'a b c a c b' | tr ' ' '\n' | sort \  
| uniq -c | awk '{print $2,$1}' \  
| sort -r -k2

Collation 
echo -e '1\n2\n3\n4' | awk '  
BEGIN{sum=0;max="?"}  
max=="?"{max=$1}  
{sum+=$1}  
$1>max{max=$1}  
END{print "Avg:" sum/NR "\nMax:" max}'

A command a day...

List descriptions of system
commands

find /bin /usr/bin /sbin /usr/sbin \  
-type f -perm /111 | \  
xargs -L1 basename | \  
xargs -L1 whatis | grep '([18])'

Unix failings

“Prayerful parsing”
I/O is expensive  
obj → str ⇒ kernel ⇒ str → obj  
but easy concurrency, batching

Interface inconsistency
Lack of re-use  
Interface, validation, documentation, serialise, parse

Security

Other Systems

Applescript example

tell application "Finder" 
set the percent_free to ¬ 

(((the free space of the startup disk) / ¬ 
 (the capacity of the startup disk)) * 100) div 1  

end tell  
if the percent_free is less than 10 then 

tell application (path to frontmost application as text)  
display dialog "The startup disk has only " & ¬ 

the percent_free & ¬ 
" percent of its capacity available." & return & return & ¬ 
"Should this script continue?" with icon 1  

end tell  
end if

Is 10% of disk available? 
https://developer.apple.com/library/mac/documentation/applescript/conceptual/

applescriptlangguide/conceptual/ASLR_lexical_conventions.html#//apple_ref/doc/uid/
TP40000983-CH214-SW1

PowerShell examples

These examples from Monad Manifesto

What is filling up my application logs?

 

Get-EventLog application|Group source|Select –
first 5|Format-Table  
 
counter Property  
====== ===========  
 1,269 crypt32  
 1,234 MsiInstaller  
 1,062 Ci  
 280 Userenv  
 278 SceCli

Not text, but objects
are passed around

NounVerb

Why is MsiInstaller filling my log?

Get-EventLog application |Where {$_.source -eq
“MsiInstaller”}|Group Message |Select –first 5
|Format-Table  

 
counter Message  
====== ===…  
 344 Detection of product '{90600409-6E45-45CA-BFCF-C1E1BEF5B3F7}…  
 344 Detection of product '{90600409-6E45-45CA-BFCF-C1E1BEF5B3F7}…  
 336 Product: Visual Studio.NET 7.0 Enterprise - English – Inter…  
 145 Failed to connect to server. Error: 0x800401F0  
 8 Product: Microsoft Office XP Professional with FrontPage --…

Change Format-Table to output XML, CSV, LIST,
HTML, Excel...

PropertyObject

Is my eventlog usage regular across the week?

Get-EventLog application | Group
{$_.Timewritten.DayOfWeek}  
 
counter DayofWeek  
====== ========  
 1,333 Tuesday  
 1,251 Wednesday  
 744 Thursday  
 680 Monday  
 651 Friday  
 556 Sunday  
 426 Saturday

The shell can validate
properties etc. using
reflection, meaning it can
look at what methods etc.
are available.

All these commands run in
the same run-time
environment (.NET) so I/O
is cheap.

Conclusions

Small components

Exposed interfaces

Scripts to compose

Extension via scripting

Suggested Reading
The Art of Unix Programming Eric S. Raymond

The Unix Hater’s Handbook Simson Garfinkel,
Daniel Weise, and Steven Strassmann

Monad Manifesto Jeffrey P. Snover

Scripting: Higher Level Programming for the 21st
Century John K. Ousterhout (father of Tcl)

Bash Guide for Beginners Machtelt
Garrels

[Reference] bash(1)

