
COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Scripting

Least Privilege Principle

Unix scripting

Examples

Other solutions

!1

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Least Privilege Principle

No process or file should be given more
privileges than it needs to do its job.

Setuid programs: don’t set unless necessary

Run programs under special user id such as
www and nobody if possible

Some applications such as httpd can change
its user id from root to nobody after opening
the privileged port number 80.

Temporary files shouldn’t be in /tmp

!2

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Scripting is...

‘Easier’

Glue

Weakly typed

Interpreted

!3

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Cons of Unix scripting

“Prayerful parsing”
I/O is expensive due to process
communications

Interpretation slower than compiled
code

Interface inconsistency

Security: TOCTTOU
rm /tmp/*/* (find /tmp -not-accessed-
recently | xargs rm)

!4

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Who scripts?

Users

Power users

Administrators

Developers

Testers

!5

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Developments
Job Control Language

1960s Unix pipe

1993 Applescript

2005 Automator

2006 Windows PowerShell

Available shells in Linux

bash, sh, tcsh, csh; use cat /etc/shells
!6

Unix Shell Scripting

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Unix Philosophy

Write programs that do one thing and
do it well. Write programs to work
together. Write programs to handle
text streams, because that is a
universal interface.

Doug McIlroy  
Inventor of the | construct

!8

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

./hello
#!/bin/sh  
echo “Hello, World!”
$ chmod +x ./hello  
$./hello  
Hello, World!  
$ sh ./hello  
Hello, World!
echo -e “no newline\c”

!9

No extension

The correct UNIX way

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Another example
#!/bin/bash
clear
echo "This is information provided by mysystem.sh. Program starts
now."
echo "Hello, $USER"
echo
echo "Today's date is `date`, this is week `date +"%V"`."
echo
echo "These users are currently connected:"
w | cut -d " " -f 1 | grep -v USER | sort -u
echo
echo "This is `uname -s` running on a `uname -m` processor."
echo
echo "This is the uptime information:"
uptime
echo
echo "That's all folks!"

!10

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

#! “Sh-Bang”
First line
#!/bin/sh

#!/usr/bin/perl -wnl

#!/usr/bin/env python

Default is /bin/sh
SetUID not honoured
is also used for comments

!11

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Design Patterns

Source: ls
read from file and write to stdout

Filter: sort
read from stdin and write to stdout

Sink: less
read from stdin and write to file

“Cantrip”: rm
do something but return nothing

Compiler: tar
read from file and write to another file

!12

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Good scripts
A sensible name

don’t clash with existing commands and
programs

No errors
Perform the intended task
Have a clear logic
Efficient, no unnecessary work
Informative, notifying users about what it is
doing
Reusable

!13

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

BASH basics

Files read by bash

/etc/profile, .bash_profile, .bashrc

depending on login, interactive, non-interactive, or use
sh directly

Built-in commands like cd and eval, exit, exec, export, …

Three types of commands

built-in, function, executable programs

debugging a script: bash -xv script_file
Some self-study required. Read Bash Beginners Guide

!14

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

BASH basics (cont.)
Environment variable

A variable with name and value used by shells and processes
Use printenv or env to find them

They can be set by
Globally, /etc/profile, /etc/bash.bashrc
Per user, ~/.bash_profile,~/.bashrc, ~/.profile

Non login shell, non interactive shell (shell scripts)
/etc/profile, ~/.bash_profile, ~/.bash_logout

Used by login shells
/etc/bash.bashrc, ~/.bashrc

used by interactive, non-login shells
For details: https://wiki.archlinux.org/index.php/

environment_variables
!15

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

I/O Channels

stdin previous pipe or
terminal, ^D to ‘end-of-file’

stdout next pipe or terminal

stderr not piped

FD 0,1,2 respectively
!16

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Redirection
command > file-overwriting

command >> file-appending

command 2> file

redirect stderr to file

echo “Warning to stderr” >&2

redirect stdout to stderr

echo “To black hole” 2> /dev/null >&2

command < f1_in > f2_out 2> f3_err
!17

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

| “Pipe”

Communication channel between
programs

5 biggest dirs in the current dir
du -xkd 1 \  
 |grep -v "^[0-9]*[[:space:]]*\.$"\  
 |sort -rn | head -5

All I/O via kernel, slow
!18

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Variables
varname=value Assignment 
no spaces around ‘=’

$varname Deference

Global and local variables

Environment variables are global variables.

Seen by subshell/child processes if 
export PATH=$HOME/bin:$PATH

Beware white-space! 
varname=”foo bar”

!19

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Interpolation

A built-in command in a string can be executed and the
execution output will replace the original command.

‘non-interpolated string’

`command`

“interp. string $varname `command`”

foo=`command \`command\``  
foo=$(command $(command)) (Bash specific)

!20

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Conditions—if

if␣[␣$# -lt 2]; then  
if-less-than-two-arguments  

elif␣[␣\(␣“$1”␣=␣‘foo’␣\)␣-a␣\  
 \(␣-r␣/etc/foorc␣\)␣]; then  
if-arg1-is-foo-and-foorc-is-readable  

else  
if-otherwise  

fi

if␣!␣grep -q ...; then  
if-grep-did-not-find  

fi

!21

see test(1)

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Conditionals—case

case “$fo_proc” in  
‘fop’)  

command;;  
‘xep’)  

command1; commandN;;  
*)  

default-command >&2  
exit 1;;  

esac

!22

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Loops—for

for i in foo bar baz  
do  
echo $i  
done

((... ; ... ; ...)) is a Bash-ism  
 
for ((i=128; i<160; i++)); do  
printf “ip%03d\tA\t192.168.1.%d\n” $i $i  
done

!23

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Loops—while

ls | while read filename  
do  
do stuff with “$filename”  

done

while true  
do  
infinite loop body  

done

!24

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Subshells

139.80.32.2 - - [26/Mar/2007:17:28:34 +1200] ↩ 
"GET /path/to/file.html HTTP/1.0" 304 -

(echo "IP Freq";  
 (cat access_log;  
 gzcat access_log.*.gz)  
 | cut -d’ ‘ -f1 | sort | uniq -c  
 | sort -rn | awk '{print $2,$1}'  
) | column -t

!25

getting ugly, start making functions

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Arithmetic

expr 2 * 8  
16

echo $((2 * 8)) Bash-ism 
16

echo 'scale=2; 1/3' | bc  
.33

echo 'ibase=10; obase=2; 192' | bc  
11000000

!26

Sed and Awk

Read a book!

Regular expressions!

Takes a while to learn

A few recipes are useful

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

sed—Stream Editor

Delete header on first line 
sed -e 1d

Disable FTP service in inetd 
sed -e ‘s/^ftp/#&/’ < inetd.conf > \  
 inetd.conf.new  
mv inetd.conf{,~}; mv inetd.conf{.new,}

What requests got a 404? 
gzcat access_log.*.gz | sed -ne '/ 404
[0-9]*/s/^.*"[A-Z]* \(.*\) HTTP\/
[0-9.]*".*$/\1/p'

!28

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

awk

Re-order fields 
echo 'a b c a c b' | tr ' ' '\n' | sort \  
| uniq -c | awk '{print $2,$1}' \  
| sort -r -k2

Collation 
echo -e '1\n2\n3\n4' | awk '  
BEGIN{sum=0;max="?"}  
max=="?"{max=$1}  
{sum+=$1}  
$1>max{max=$1}  
END{print "Avg:" sum/NR "\nMax:" max}'

!29

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

A command a day...

List descriptions of system
commands

find /bin /usr/bin /sbin /usr/sbin \  
-type f -perm /111 | \  
xargs -L1 basename | \  
xargs -L1 whatis | grep '([18])'

!30

Other Systems

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Applescript example

tell application "Finder" 
set the percent_free to ¬ 

(((the free space of the startup disk) / ¬ 
 (the capacity of the startup disk)) * 100) div 1  

end tell  
if the percent_free is less than 10 then 

tell application (path to frontmost application as text)  
display dialog "The startup disk has only " & ¬ 

the percent_free & ¬ 
" percent of its capacity available." & return & return & ¬ 
"Should this script continue?" with icon 1  

end tell  
end if

!32

Is 10% of disk available? 
https://developer.apple.com/library/mac/documentation/applescript/conceptual/

applescriptlangguide/conceptual/ASLR_lexical_conventions.html#//apple_ref/doc/uid/
TP40000983-CH214-SW1

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

PowerShell examples

These examples from Monad Manifesto

What is filling up my application logs?

 

Get-EventLog application|Group source|Select –
first 5|Format-Table  
 
counter Property  
====== ===========  
 1,269 crypt32  
 1,234 MsiInstaller  
 1,062 Ci  
 280 Userenv  
 278 SceCli

!33

Not text, but objects
are passed around

NounVerb

Why is MsiInstaller filling my log?

Get-EventLog application |Where {$_.source -eq
“MsiInstaller”}|Group Message |Select –first 5
|Format-Table  

 
counter Message  
====== ===…  
 344 Detection of product '{90600409-6E45-45CA-BFCF-C1E1BEF5B3F7}…  
 344 Detection of product '{90600409-6E45-45CA-BFCF-C1E1BEF5B3F7}…  
 336 Product: Visual Studio.NET 7.0 Enterprise - English – Inter…  
 145 Failed to connect to server. Error: 0x800401F0  
 8 Product: Microsoft Office XP Professional with FrontPage --…

Change Format-Table to output XML, CSV, LIST,
HTML, Excel...

PropertyObject

Is my eventlog usage regular across the week?

Get-EventLog application | Group
{$_.Timewritten.DayOfWeek}  
 
counter DayofWeek  
====== ========  
 1,333 Tuesday  
 1,251 Wednesday  
 744 Thursday  
 680 Monday  
 651 Friday  
 556 Sunday  
 426 Saturday

The shell can validate
properties etc. using
reflection, meaning it can
look at what methods etc.
are available.

All these commands run in
the same run-time
environment (.NET) so I/O
is cheap.

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Summary

What is the least privilege principle?

List a few pros and cons of shell scripting compared with other
programming languages like C/C++.

!36

COSC301 Lecture 4: Scripting

COSC301 Lecture 4: Scripting

Suggested Reading
The Art of Unix Programming Eric S. Raymond

The Unix Hater’s Handbook Simson Garfinkel,
Daniel Weise, and Steven Strassmann

Monad Manifesto Jeffrey P. Snover

Scripting: Higher Level Programming for the 21st
Century John K. Ousterhout (father of Tcl)

Bash Guide for Beginners Machtelt
Garrels

[Reference] bash(1)
!37

