

COSC301 Lecture 9

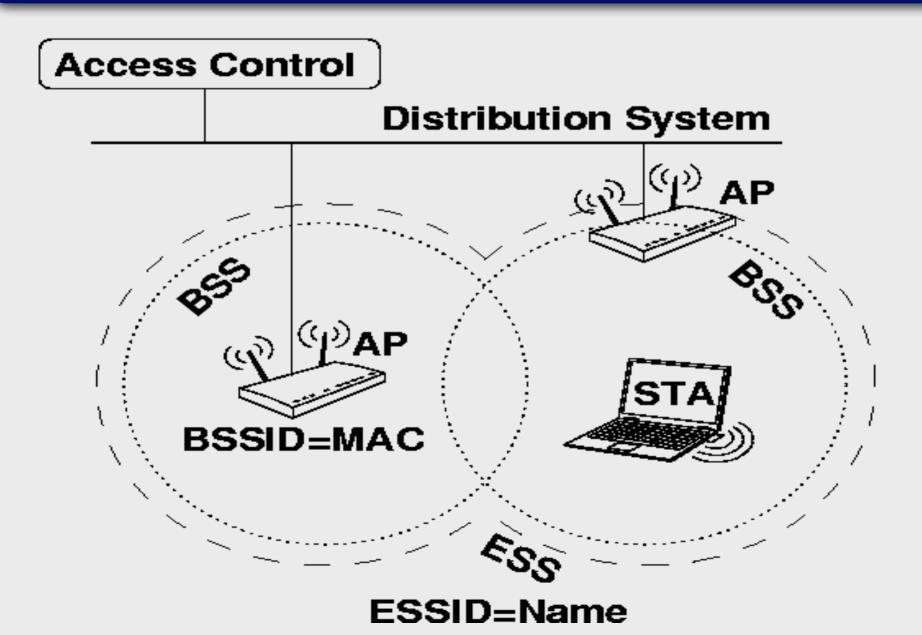
802.11 Wireless Networking

Some IEEE 802 Standards

- 802.1: Bridging and Management, e.g. 802.1X
- 🖗 802.3: Ethernet
- 802.11: Wireless (WiFi)
 - 🦉 802.11b, 802.11a, .11d, .11g, ..., .11aj, .11ay
- 802.16 Broadband Wireless MAN (WiMAX)
- 802.15.4: Zigbee, wireless sensor networks
- § 802.15.1: bluetooth, 802.15.6: WBAN
- http://standards.ieee.org/getieee802/

802.11 Family

✓ 802.11b 11Mbps, 2.4GHz, Kick-started Wi-Fi technology, ~30m indoors.


802.11a 54Mbps, 5Ghz, Less common than 11g, but technically superior.

- 802.11g 54Mbps, 2.4GHz, still very very common Compatible with 11b. Mixed or exclusive...
- 802.11n 540Mbps (typ. 200Mbps), 2.4+5GHz, current choice Max speed hard to determine, ~50m indoor, MIMO Supports a/b/g or 'Greenfield' (exclusive) Also supports extensions for priority, multimedia

₩ 802.11aj 15Gbps, mmWave

802.11ay 20Gbps, mmWave

Structural Overview

802.11 Terminology

AP Access Point

- STA Station
- BSS Basic Service Set
 - A group of stations that communicate with each other and an access point, in an area called a basic service area.

802.11 Terms (cont.)

ESS Extended Service Set

- Multiple BSSs can be linked using a distribution system to create an Extended Service Set
- SSID Service Set Identifier
 - The MAC address of an AP
- ESSID Extended Service Set Identifier

The name of the network

802.11 Terms. (cont.)

Wireless Distribution System (WDS)

- Backbone of multiple APs, and the inter-AP communication. Usually Ethernet, may be wireless.
- 802.11F defines the Inter Access-Point Protocol (IAPP), but use is limited.

₩ode

- Either Independent (Ad-Hoc) or Infrastructure (AKA Managed).
 - Ad-Hoc BSS is termed an IBSS.

Infrastructure

- Requires an AP to associate to
- Higher layers of networking stack configured using the same methods as you would for any wired Ethernet station
 - Most commonly DHCP is used, as wireless nodes are generally mobile devices
 - Further security measures may be employed to manage security risks associated with wireless

Ad-Hoc

AirPort: On

Turn AirPort Off

DV

✓ tlangel

Other...

Create Network...

Use Interference Robustness

HE()

11:34 PM 💵

Open Internet Connect...

Computer to Computer

Please enter the following information to create a Computer to Computer Network:

Name:	Galbreith
Channel:	Automatic (11)
	Enable encryption (using WEP)
Password:	
Confirm:	
WEP key 🗸	/ 40-bit (more compatible)
The WEP I characters o	128-bit or 10 HEX digits.
Hide Optio	ons Cancel OK

Nodes in an Ad-Hoc network communicate without any need for network infrastructure such as an AP, or network level services such as DHCP, DNS

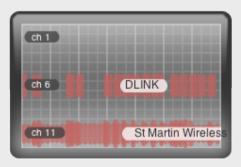
ZeroConf protocols to manage IP addresses etc.

Signal Strength

 Signal Level Noise Level 👾 Link Quality Transmit Power

Strength of the received signal

Strength of the noise


Signal to Noise ratio

How loud we speak

With Receive Sensitivity How well we can hear

Finding a Network

Apple St Martin			24 Mbps 11
#	ŝ	8	Description
11	40	WPA	St Martin Wireless [
6	32	WEP	DLINK [D-Link]
			i

Passive scanning listens for AP beacons
Listens on each channel for a certain dwell time

Won't detect closed/hidden networks

Active scanning sends Probe Requests

On each channel

Requests a particular ESSID or "any"

Produces a scan report with discovered ESSIDs

Security Prot. Overview

MAC Filter List

Wot a security protocol

- Access Control by (changeable) MAC address
- ACLs can be stored centrally using RADIUS
- WEP (Wired Equivalent Privacy)

Se Most common denominator

- Winimal protection (it's really quite broken)
- Pre-Shared Key (PSK)
 - Large amount of work to change

WPA

Wi-Fi Protected Access

Subset of 802.11i that was released when WEP flaws became a barrier to adoption

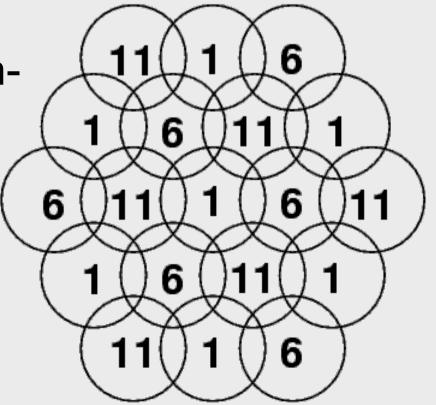
WPA Personal

- WEP with short-lived changing keys
 - Temporal Key Integrity Protocol (TKIP)
 - Different key per user/session/packet
 - Performance cost if not done in hardware
- Reported problems with native Windows XP

WPA Enterprise, 802.11i

WPA Enterprise

§802.1X for user authentication


"Port" based authentication framework

- Extensible Authentication Protocol (EAP)
- Requires RADIUS backend
- ₩802.11i—WiFi Alliance calls it WPA2

Advanced Encryption Standard (AES) cryptography

Channel Layout

- 13 channels in total (1, 2,...,13)
- Keep APs with overlapping coverage at least three channels apart
- Hex-pattern layout for nonoverlapping channels
- But don't forget that space is 3D
- Limit number of nodes to about 30 per AP

Location of APs

- Considerations
 - Backbone network connection
- Power supply
 - Sec Supply
 - Power over Ethernet (PoE) modules or switch
- Desired coverage area
- 🖗 AP-antenna distance (loss)
- Environmental conditions
 - 🥰 Wind disturbance; Rain; Sun (heat)

Antenna Types

Omni-directional High-gain Omni Diversity antennas Directional Panel, Yagi, Parabolic Shown is a Wave-Guide "cantenna" Trade off polar coverage for distance Sometimes advertised with its azimuth and elevation to show coverage area

n

Omni-directional

AP with antenna diversity Linksys WRT54

7dBi High-Gain Omni

Directional Antennas

15dBi Yagi

10dBi Panel

19dBi Parabolic

DIY Antennas

Antennas are pretty simple, thus easy to make

The Pringles can antenna that made DIY Wi-Fi popular

Frying scoop parabolic

NZ innovation, using cheap USB Wi-Fi sticks and even cheaper Chinese cook-ware

www.usbwifi.orconhosting.net.nz/

- Cameron made this one
- Intended to get ~12dBi

Coffee Can Waveguide

The diameter is the important dimension, with enough length

Parabola from cardboard and foil.
 Can be used to boost signal for a simple dipole.

Security Issues

Bandwidth stealing You are responsible for their actions Access to wired network ... and other wireless nodes ARP Poisoning Man-in-the-middle attacks also of wired network if not routed ₩AP Spoofing

Uses of Wireless

X

X

X

- When cables are a hassle/liability
- Fransient networks
- Hotspots
- Backup links
- Reliability
- Security (can be managed)

Summary

Two modes of WiFi

- infrastructure and ad hoc
- Two modes of authentication
 - key based and user code based
- Security issues
- Cases or conditions of using WiFi

References

802.11 Wireless: The Definitive Guide

- Matthew S. Gast; O'Reilly & Associates ISBN: 0-596-00183-5
- 802.11 Security

Bruce Potter & Bob Fleck; O'Reilly & Associates ISBN: 0-596-00290-4