
COSC 326 Manifesto

Manifesto for COSC326

Discard your expectations. This paper is quite different from any other course you
have taken so far. There will be no lectures, and there will be no obvious teaching, but
you will undoubtedly learn a great deal and you will have to work very hard. We will
introduce some elements of ‘real life’, where you will be the computer professional with
the answers, who guarantees the client a working product, and where the client must
be able to trust your competence.

Programming includes two important elements—analytical skills, and creative prob-
lem solving skills. For this reason, a great deal of time in this course will be spent on
developing these skills through a series of problem solving assignments. You will be
given problems and you will be expected to continue with a problem until you have
solved it or satisfactorily completed the exercise. Some of the assignments will not re-
quire use of the computer, although you may find the computer useful for ancillary
tasks.

Requirements for Attendance and Assessment

COSC326 is a purely practical course. There are two two-hour supervised laboratories
every week and a one-hour ‘Town Hall’ meeting where we will discuss problems and
analyse approaches. We will also use these sessions to drop hints, give out instructions,
and listen to your ideas. You are expected to attend all of these sessions; they hinge on your
participation. According to the standard University workload guidelines, you should
also be prepared to spend roughly another 10 hours each week (average) outside the
scheduled labs in reading, preparation, and unsupervised laboratory work. If you do
not attend and put in the work, you are not likely to pass.

Assignments

Programming is a practical skill and you can learn only by practice. We cannot give you
‘real’ programming problems because these take weeks or months for professionals to
complete. Instead, the course consists of a series of smaller problems to be solved in
the laboratories. These exercises have been carefully chosen to make you discover and
develop certain skills. In music teaching, such studies or études have been used for
exactly this purpose for hundreds of years.

In real programming projects, part of the problem is cleaning up the defects in the
specification you get from your client. You need to be alert to this because we do not
guarantee that our problem specifications are clear or exact. We encourage you to ask
for clarification of a problem whenever you are unsure about instructions and before
you embark on programming.



COSC 326 Manifesto

Sample input, when provided, is just meant to indicate the correct format – it is not
intended to stress test your submissions. Generally, your submissions will be tested
against much more extensive or difficult data sets. One of the key skills to take away
from COSC326 is being able to find ways to test your own work. In COSC326 “But it
worked on the sample data” is not a valid reason to claim that a submission should be
accepted.

You will do some assignments as individuals or in pairs and others in groups. Gener-
ally, a group can solve problems that are beyond the abilities of the individual members.
You will also find the workload may be decreased through effective collaboration. To
work most effectively in a group, you need to learn how to cooperate. Working in pairs
or groups is an integral part of the course and you will be required to participate in
these. However, even when assignments are completed by a group, we will reserve
the right to monitor individual contributions, participation, and ability level in order
to satisfy the success criteria of the course. We also reserve the right to ask for specific
individual contributions.

Assessment

In this course, a program that works ‘more or less’ is not good enough. Computer
Science professionals are expected to be able to solve problems, and real software is
expected to meet basic professional standards. For this reason, the success criterion
for COSC326 is that you complete each assignment to a satisfactory standard. The
assignments, however, are designed also to facilitate learning and stretch your ability.
The underlying philosophy of this paper (‘more or less’ is not good enough) means that
we cannot just adopt a standard system where each etude counts for a certain number
of points and these are added up to obtain a final grade.

The grading system within COSC326 has three levels of completion for each etude:
accepted, merit, and excellence.

• Accepted Code runs and meets the I/O criteria. In cases where efficiency is an
issue, small- and medium-sized examples run (i.e., the algorithm is not funda-
mentally broken). The code should be sufficiently documented and accompanied
by a Readme file. For reports, the answers are given, and grammar/typography
is to an acceptable standard.

• Merit Code runs efficiently on all examples and is well-structured. For reports,
there are no (or very few) grammatical or typographical errors and the presenta-
tion is clear and correct.

• Excellence Completion will be above and beyond the basic criteria.

The accepted and merit standards will be explicitly given for each etude along with
an indication of whether the etude would be considered for excellence and, if so, how
this might be achieved. Resubmission to get from accepted to merit is allowed (indeed,



COSC 326 Manifesto

encouraged), and resubmission to get from merit to excellence is also possible. Resub-
mission of not accepted submissions is allowed. We will use the following scheme for
grading:

Grade Completion Required Criteria
C- 11 etudes Omitting at most one individual etude
C 12 etudes Omitting at most one individual etude
C+ All 13 etudes
B- All 13 etudes Three (at least one individual) to merit standard
B All 13 etudes Six (at least three individual) to merit standard
B+ All 13 etudes 10 to merit standard (at least four individual)

A- All 13 etudes
At least 10 to merit standard
and at least one individual etude to excellence

A All 13 etudes to merit standard
Three to excellence
(including at least one individual)

A+ All 13 etudes to merit standard
Five to excellence
(including at least two individual)

Submission of Assignments

We do not expect you to hand in the assignments at the end of each lab, but you are
advised to try and keep up with the work. There may be specific deadlines for some of
the assignments for reasons which will be obvious – these deadlines must be met. You
will find that in many cases after your first submission you will be asked to do more
work to complete an assignment and you need to leave time for this. No submissions
of assignments will be accepted after the last day of lectures.

Academic integrity

In a paper such as COSC326 maintaining the standards of academic integrity is vi-
tally important. General information on the standards and procedures connected with
academic integrity and academic misconduct are available at the University’s pages
on academic integrity and academic misconduct, but there are a few issues specific to
COSC326 as well. These will also be discussed in the first Town Hall session.

For the purpose of the following, “you” means “just you” for individual études, and
“your pair/group” for pair/group études.

You may not:

• Ask questions on internet forums specific to any étude.

• Search for code online that’s specific to an étude (or closely related to it).

https://www.otago.ac.nz/study/academicintegrity/index.html
https://www.otago.ac.nz/study/academicintegrity/index.html


COSC 326 Manifesto

• Provide access to any documents that you’ve produced in working on an étude
to any other student or group (with one exception, test data – see below).

• Write code or reports while discussing them with anyone else (other than an in-
structor for COSC326).

You may:

• Share test data with any other students in COSC326 (with the limitation to single
test cases not complete test files for bulk testing).

• Carry out general research online for the purposes of understanding a problem,
finding appropriate data structures, etc.

• Discuss études with other members of the class.

There are two overriding general principles:

• Work that you submit for an étude must be your own, and any exceptions to that
(e.g., if using a third-party library) must be clearly indicated.

• In case of any doubt ask permission rather than presuming that something is
permitted/forbidden (if you don’t ask, you should presume that it’s forbidden!)



COSC 326 Manifesto

Course Objectives

This course aims to meet an extensive set of learning objectives with the overall goal
of helping you to become more effective programmers through problem solving. After
each étude you will see a list of numbers. These refer to skills in the list below, and
specify the principal skills that the étude is trying to foster. These are not distributed
evenly. Some skills are needed for almost every task and some simply require more
attention because they are harder to develop. The most important generic skills are
having a good understanding of a problem and working with people and these are
therefore implicitly part of the objectives of almost every étude.

1. Understanding a problem

1.1 simplifying

1.2 clarifying

1.3 generalising

1.4 specifying

2. Problem solving strategies

2.1 lateral and creative approaches to problem solving

2.2 solving problems according to specification

2.3 top-down and bottom-up solution designs

2.4 solving a related problem

2.5 working backwards

2.6 choosing appropriate tools, e.g. pen and paper, spreadsheet, programming lan-
guage

2.7 applying persistence and thoroughness, removing mental blocks

2.8 appropriate, effective, and creative use of resources (time, personal abilities, library
etc.)

2.9 simulation, finding metaphors, trial and error

2.10 designing and using appropriate notation



COSC 326 Manifesto

3. Computer related techniques

3.1 understanding the limitations and problems specific to computer program execu-
tion (such as overflow, rounding errors, division by zero)

3.2 understanding file formats, platform specifics and proprietary aspects of comput-
ing

3.3 understanding recursion and iteration and when and why to use them

3.4 using appropriate data structures, considering suitability, simplicity and size

3.5 adequate testing, debugging and validation

3.6 understanding efficiency, profiling and measuring

3.7 understanding and using fundamental algorithms

4. Working with people

4.1 understanding different approaches required in team and individual projects

4.2 becoming aware of group dynamics; identifying different skills of group members,
task allocation, participation, conflict resolution

4.3 collaboration and ego-less programming

4.4 working with other people’s programs; reading, understanding, debugging, main-
taining, re-using code, libraries

4.5 producing software that is adequately documented, commented, and user-friendly

4.6 an understanding of ethics, and professional responsibilities towards colleagues
and clients, including confidentiality and software protection

4.7 recording proceedings, decisions, progress etc.

4.8 writing clear and concise reports


	Requirements for Attendance and Assessment
	Assignments
	Assessment
	Submission of Assignments
	Academic integrity
	Course Objectives
	1. Understanding a problem
	2. Problem solving strategies
	3. Computer related techniques
	4. Working with people


