1 Tutorial problems

1. Let $X = \{1, 2, 5\}$ and $Y = \{0, 2, 4, 6\}$. List the elements of:

- (a) $X \cup Y$ (the union of X and Y)
- $\{0, 1, 2, 4, 5, 6\}$
- (b) $X \cap Y$ (the intersection of X and Y)

 $\{2\}$

(c) X - Y (the complement of Y relative to X)

 $\{1, 5\}$

(d) Y - X (the complement of X relative to Y)

 $\{0, 4, 6\}$

(e) $\mathcal{P}(X)$ (the power set of X, i.e. the set of all subsets of X)

 $\emptyset, \{1\}, \{2\}, \{5\}, \{1,2\}, \{1,5\}, \{2,5\}, \{1,2,5\}$

2. Let
$$X = \{0, 1, 2\}$$
 and $Y = \{f, t\}$.

(a) List all the members of $X \times Y$.

$$(0, f), (0, t), (1, f), (1, t), (2, f), (2, t).$$

(b) *List all total functions from Y to X.*Each column (after the first) in the table below describes one function according to its values at *f* and *t* respectively.

- (c) List all partial (but not total) functions from Y to X.
 - Each column (after the first) in the table below describes one function according to its values at f and t respectively. I use \perp to represent "undefined".

f	\perp	\perp	\perp	0	1	2
t	0	1	2	\perp	\perp	\perp

- 3. Let *X* be a set with 3 elements, and *Y* a set with 4 elements.
 - (a) How many elements are there in $X \times Y$?

12 since any one of the 3 elements from *X* could come first, and any of the 4 from *Y* second (as these are independent we multiply together the options).

- (b) How many total functions are there from X to Y?
 Each of the 3 elements of X independently chooses one of 4 values, so we get 4 × 4 × 4 = 4³ = 64 possible total functions.
- (c) How many total functions are there from Y to X? This time $3^4 = 81$
- (d) How many partial (possibly total) functions are there from X to Y? We can think of "undefined" as a fifth possible value so get $5^3 = 125$.
- 4. Give examples of functions $f : \mathbb{N} \to \mathbb{N}$ that satisfy:
 - (a) *f* is total and injective but not surjective,

Note in this and all the remaining answers there are many possibilities. I'm just giving one example of each. The function f(x) = 2x is injective since 2x = 2y implies x = y and not surjective since it takes on no odd values.

(b) *f* is total and surjective but not injective,

Take f(x) = x - 1 except f(0) = 0. It's surjective since x = f(x + 1) for all x but not injective since f(0) = f(1). Or take $f(x) = \lfloor x/2 \rfloor$ (i.e., integer division as in Java). Now surjective because x = f(2x) for all x, but not injective since f(2k) = f(2k + 1) for any k.

(c) *f* is total, injective and surjective, but is not the identity, Take f(0) = 1, f(1) = 0 and f(x) = x for all x > 1.

(d) *f* is not total, but is surjective.

Take *f* to be undefined at odd numbers and f(x) = x/2 for even numbers, or *f* undefined at 0 and f(x) = x - 1 for all x > 0.

3