
COSC 341: Lecture 3 Recursion and induction

1 Introduction

Recursive definitions and inductive proofs are the twin poster children of theoretical
computer science. Recursively defined sets and data structures are ubiquitous, and in-
duction is the tool that allows them to be analyzed. Before embarking on the formalities
let’s consider a toy example.

Definition: A is the smallest subset of N having both the following properties:

• 0 ∈ A

• If x ∈ A then 2x ∈ A and 4x+ 1 ∈ A.

Problem: Prove that A is the set of natural numbers whose binary expansions do not
contain consecutive 1s.

The first question to ask is: does the definition make sense? Can we be sure there is any
such set A? Can we be sure there is a smallest one? The way in which the definition is
formed should make it clear that the answer in each case is yes. The first part forces us
to include the element 0. The second part gives us a recipe for adding new elements to
A given some old ones. But the key thing is that the “new” elements are in some sense
more complex (specifically, larger) than the old ones. So we get a sequence of larger and
larger numbers that we’re obligated to include in A, but provided we do include these
and no others, then both conditions of the definition will be met.

The second question to ask is: how can we prove things about A? Again, the word
“smallest” in the definition comes to our rescue. Suppose that we have some element of
A – we want to show that it has no consecutive 1’s in its binary expansion. If that element
is 0 this is clear. If not, then it must be of the form 2x or 4x+ 1 for some simpler element
x ∈ A. Supposing we already knew the result were true for x then we see that the binary
expansion of the element we’re interested in is obtained from that of x by appending 0
or 01. So, we can never create consecutive 1’s. Conversely, if we have a number whose
binary expansion contains no consecutive 1s and it is not 0 then it either ends with 0, or
ends with 01, so it is either 2x or 4x+ 1 for some other number of this type, and so must
belong to A.

1



COSC 341: Lecture 3 Recursion and induction

The key point to justify in the argument above is: why can we assume the result we are
trying to prove for all simpler (in this case smaller) numbers? Well, imagine that the
result were false. Then either there would be a smallest number belonging to A which
did have consecutive 1’s, or there would be a smallest number not having consecutive 1’s
but not belonging to A. In both cases “the result” is true for all numbers smaller than this
counterexample – and the argument then shows that the counterexample can’t actually
exist.

2 Recursive definitions

A recursive definition of some set, A, of objects consists of two explicit and one implicit
parts:

• A basis or set of atomic cases which is a list of some objects that must belong to A;

• A recursive step which is a rule or collection of rules for producing new objects in A
from existing ones (typically these rules are given as functions which, when applied
to elements of A, and possibly some other basic objects, generate new elements of
A);

• An implicit rule that A is the smallest set of elements satisfying the previous two
conditions.

Example: recursive definition of N.

First define a function s on sets as follows:

s(X) = X ∪ {X}
That is, s(X) is the set whose elements are the elements of X and the set X itself.

Now we can define N recursively:

• ∅ ∈ N

• If n ∈ N then s(n) ∈ N.

2



COSC 341: Lecture 3 Recursion and induction

Using 0 as a shorthand for the empty set:

N = {0, s(0), s(s(0)), s(s(s(0))), . . . }

And we get the more ‘normal’ notation by just counting s occurrences.

More usually we might start with some predefined set (like N) and recursively define
a subset of it. For example, how might we define the set of EVEN numbers? One way
would be to say “numbers which are a multiple of 2”, but this is not constructive (and
relies on us knowing more about arithmetic). We could do it recursively:

• 0 ∈ EVEN

• If n ∈ EVEN then s(s(n)) ∈ EVEN

3 Inductive proofs

Having formed recursively defined sets we will want to prove things about them. The
rigidity of the rules that grant membership in such a set mean that we have a tailor-made
proof principle at hand called induction. The basic set up is this: we want to prove that
every element a of a recursively designed set A has some property P . It will be both
necessary and sufficient to show that:

• All the elements specified by the base case of the recursive definition have property
P

• If the constructive rules (recursive steps) are applied to elements having property
P then the resulting elements also have property P .

Then, the implicit “smallest” condition means that no element is ever added to A that
does not have property P .

Consider the set of binary trees with natural numbers as keys defined as follows:

• A natural number is a binary tree (called a leaf)

3



COSC 341: Lecture 3 Recursion and induction

• If TL and TR are binary trees and n is a natural number then the triple T = (n, TL, TR)
is a binary tree.

Define the number of leaves of a binary tree to be 1 if it is a leaf, and the sum of the
number of leaves of TL and TR if the second case applies. Define the number of internal
nodes of a binary tree to be 0 if it is a leaf, and 1 plus the sum of the number of internal
nodes of TL and TR in the latter case.

Problem: Prove that in any binary tree, the number of internal nodes is one less than the
number of leaves.

This becomes quite simple when we use the inductive method. It’s obviously true in the
base case, since there we have one leaf, and zero internal nodes. If it’s true of TL and TR

then we just compute:

internal (T ) = 1 + internal(TL) + internal (TR)

= 1 + leaf (TL)− 1 + leaf (TR)− 1

= leaf (TL) + leaf (TR)− 1

= leaf (T )− 1.

The recursive definition of N allows for a particular form of induction called mathematical
induction (which is sometimes the only kind that people learn about). We can express it
in either a weak or strong form. The weak form is:

If P is a property of natural numbers such that P (0) is true, and whenever
P (k) is true then P (k + 1) is true, then P (n) is true for all n ∈ N.

The strong form is:

If P is a property of natural numbers such that P (0) is true, and whenever
P (j) is true for all j < k then P (k) is true, then P (n) is true for all n ∈ N.

To see that there really is no difference, think of climbing a ladder. The weak form says
“if you can always get to the next step from the previous one, you can go as high as you

4



COSC 341: Lecture 3 Recursion and induction

like”, while the strong form says “if, having gotten this far, you can always get one step
further, then you can go as high as you like”. It only appears to be stronger since in the
chain of argument leading up to determining that P (k) is true (for the weak form) we
will have implicitly verified it for all smaller cases already.

The standard types of examples for mathematical induction are to verify formulas for
e.g. sums. For instance:

1 + 4 + 9 + · · ·+ n2 =
n(n+ 1)(2n + 1)

6

This is true for n = 0 (both sides are 0). Suppose it to be true for n = k and compute:

1 + 4 + 9 + · · ·+ (k + 1)2 = 1 + 4 + 9 + · · · + k2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
(k + 1)(2k2 + k + 6(k + 1))

6

=
(k + 1)(k + 2)(2k + 3)

6

which is what we want since 2k + 3 = 2(k + 1) + 1.

As a quick example of the strong version let’s consider the problem: prove that every
natural number greater than 1 is either prime (i.e. has no proper factors), or is a product
of primes.

Let a natural number n > 1 be given, and suppose the result is true for all smaller natural
numbers. If n is prime there is nothing to prove. So suppose that n has a proper factor, a,
say n = ab. But, by induction, both a and b are either primes or products of primes, and
hence so is n.

To be completely honest here we’re glossing over the fact that the property P we’re using
is “n ≤ 1 or n is either prime or a product of primes” – such inessential modifications are
quite common in either form – e.g. in the weak form we might not start from 0 but from
3 and then the result is “for all n ≥ 3, P (n) holds.

5



COSC 341: Lecture 3 Recursion and induction

4 Tutorial problems

Recursive definitions

1. Give a recursive definition of the set P = {1, 2, 4, 8, 16, . . .} of powers of two within
N. (You may assume the operation + on N has already been defined.)

2. Give a recursive definition of the subset, Eq, of N × N representing the relation is
equal to using the successor function s(n) = n+ 1.

3. Give a recursive definition of “linked list of natural numbers” (hint: the base case
should be equivalent to nil, and the construction should use a pair).

4. (Harder) Give a recursive definition of the set of finite subsets of N, using the suc-
cessor function s and union as the operators.

Inductive proofs

1. Prove that 2 + 5 + 8 + · · ·+ (3n − 1) = n(3n+ 1)/2 for all n > 0.

2. Prove that 1 + 2 + 22 + · · · + 2n = 2n+1 − 1 for all n ≥ 0.

3. Suppose that two algorithms do the same thing, but the first requires f(n) = 4n+1
steps, while the second requires g(n) = n2 steps. For small values of n, the second
algorithm is better, but it seems clear that when n is “big enough” we should prefer
the first. Make this precise by proving that f(n) < g(n) for all n ≥ 5.

4. Consider the following recursively defined function f : N→ N.

f(0) = 0

f(n+ 1) = f(n) + 2n+ 1

Compute the first few values of f , form a conjecture for a more “natural” descrip-
tion of f , and prove that your conjecture is correct.

6



COSC 341: Lecture 3 Recursion and induction

5. Let a and b be two symbols. Recursively define a set of strings (sequences), D as
follows:

Basis The empty string is in D.

Recursive step If a string s is in D, then so is the string asb. If strings s and t are in
D then so is the string st.

(a) List all the strings in D consisting of 6 or fewer symbols.

(b) Prove by induction that every string in D has even length.

(c) Prove by induction that every string in D has the same number of a’s as b’s.

(d) Prove by induction that in any prefix of a string in D there are at least as many
a’s as b’s.

6. Consider the following piece of pseudocode defining a function foo(x, y), where we
assume x, y ∈ N (the division operator is the usual e.g., Java, integer division, and
% is the remainder operation). To maintain some mathematical integrity we use
= in the mathematical sense (i.e. of an equality test) and use ← to denote assign-
ment.

if x = 0 then
return 0

end if
s← foo(x/2, 2y)
if x%2 �= 0 then

s← s+ y
end if
return s

Compute a table of values for foo, form a conjecture about its more natural defini-
tion, and prove that conjecture by induction.

7


