
COSC 341: Lecture 6 Non determinism

1 Introduction

Today we’ll explore some more the relationship between deterministic and non-deterministic
finite state automata, with and without λ-transitions. Remember that in the non-deterministic
case, M accepts w if some computation of M on w leads to an accepting state. But first, an
important definition.

2 Regular languages

The regular languages are a collection of languages formed by simple constructions from
basic building blocks. We start with four basic languages (over Σ = {a, b}:

∅,λ = {λ},a = {a}, b = {b}.

And three basic operations applied to languages L and K: union (i.e. L ∪K), concatena-
tion (i.e. L · K) and Kleene star denoted L∗. The definition of the latter is “concatenation
of 0 or more elements of L” or formally by recursion: λ ∈ L∗, and if w ∈ L∗ and u ∈ L
then wu ∈ L∗.

A language is regular if it can be built up from basic languages using the three basic
operations. Again formally by recursion:

Base The languages ∅, λ and x = {x} for x ∈ Σ are regular languages

Construction If u and v are regular languages then so are u ∪ v, u · v and u∗.

Because it’s convenient, we also define L+ = LL∗, i.e. the language of one or more ele-
ments of L concatenated together.

Both START-a, the language of words whose first character is a, and ES, the language of
words of even length, are regular languages:

START-a = a(a ∪ b)∗

ES = ((a ∪ b)(a ∪ b))∗ .

1



COSC 341: Lecture 6 Non determinism

Two more examples: strings that contain bb as a consecutive substring, and strings that
don’t:

HAS-bb = (a ∪ b)∗bb(a ∪ b)∗

HAS-NO-bb = (a ∪ ba)∗(b ∪ λ).

3 NFA-λ machines as modules

By introducing λ transitions we can “encapsulate” finite state automata in such a way
that:

• there are no incoming transitions to the initial state

• there is a unique accepting state with no outgoing arrows

This is accomplished simply by adding a new initial state with a λ-transition to the previ-
ous initial state (and no other associated transitions), and adding a new accepting state,
taking each original accepting state adding a λ-transition to it, and then making all of
them no longer be accepting states. Clearly this new machine accepts exactly the same
language as the original one. The advantage of enforcing the two conditions is that it
makes it easy to combine NFAs.

Specifically we can prove:

Theorem 3.1. Suppose that M1 and M2 are NFAs accepting languages L1 and L2 respectively.
Then there are NFAs that accept L1L2, L1 ∪ L2 and L∗

1.

Proof. Represent M1 and M2 as suggested above:

M1

λ λ

2



COSC 341: Lecture 6 Non determinism

M2

λ λ

Now it is easy to combine these to recognize L1L2:

M1

λ λ
M2

λ λ

And L1 ∪ L2:

M1

λ λ

M2λ λ

And L∗
1:

M1
λ λ

λ

Corollary 3.2. Every regular language is accepted by some NFA.

3



COSC 341: Lecture 6 Non determinism

Proof. This is obvious since it’s clear that there are NFAs which accept the “basic” regular
languages ∅, λ, and x for x ∈ Σ, and the previous result shows that the construction step
in the recursive definition of regular languages can also be applied to NFAs.

4 Eliminating non-determinism

Non-determinism is a bit sneaky – and it’s hard to imagine how we could have “real”
machines which implemented it. Fortunately it turns out that it’s not actually required,
as anything that can be recognized by an NFA-λ can actually be recognized by a DFA. So,
we can freely make use of NFAs in proofs (because they are more flexible) secure in the
knowledge that if necessary they can be implemented via DFAs.

First let’s see how to get rid of λ-transitions. Suppose that M is an NFA-λ and r is one of
its states. Define the λ-closure of r to be the set of states that can be reached from r using
only λ-transitions. Recursively: r is in the λ-closure of r, and if s is in theλ-closure of q,

and s
λ→ t then t is in the λ-closure of r.

Now define a new automaton M ′ that has the same set of states as M (and the same initial
and accepting states) but without λ-transitions as follows. For each state q of M and each
letter a in Σ define:

δ′(q, a) = {t | for some r in the λ-closure of q, t is in the λ-closure of some s ∈ δ(r, a)}

i.e. δ′(q, a) is just the set of all states we could get to from q by following some λ-transitions,
then an a-transition, and then some more λ-transitions. It’s clear that M and M ′ accept
the same language, and M ′ has no λ-transitions.

How can we get from an NFA to a DFA? The idea is to trace all possible paths of a com-
putation simultaneously, using states of the DFA to represent sets of states in the NFA
– all the “places we might be” at this point. Before doing this formally here’s a simple
example.

4



COSC 341: Lecture 6 Non determinism

0 1
b

a

b

It’s easy to see that this automaton accepts (b ∪ ba)∗ and it’s non-deterministic both be-
cause there are two outgoing b-transitions from state 0 and no a-transition there.

Now let’s examine what sets of states we might be in after (partially) processing a word.
Certainly we could be in state 0 alone (e.g. when we begin). From that state if we get
an a we’re nowhere, so we could be in the empty set of states (denote this by ∅). If we
get a b we could be in state 0 or state 1 (denote by 01). We don’t need to worry about
what happens from the empty set (if we get either a or b we stay there – this is a “cannot
accept” state). From the state 01, a b could leave us in 0 (if that’s where we were) or take
us to 1 (again if we were in 0), and a could take us to 0 (if we were in 1). So, we get to 01
on b and to 0 on a. Now there are no remaining states to worry about so let’s try to draw
the new automaton:

0

∅

01

b

a

a, b

b

a

There was one remaining subtlety – each state of this automaton that includes an accept-
ing state must be made into an accepting state.

The idea behind this construction gives us:

Theorem 4.1. Let M be an NFA. Then there is a DFA DM that accepts the same language.

5



COSC 341: Lecture 6 Non determinism

Proof. Rather than explicitly working out “where we might be”, in proving this result it’s
easiest to assume “we might be anywhere”. That is, if Q is the set of states of M we take
the set of states of DM to be P(Q), i.e. the set of all subsets of Q. Then, for each c ∈ Σ
and X ⊆ Q we define:

δDM (X, c) = {y ∈ Q | for some x ∈ X, y ∈ δM (x, c)}
Taking the initial state of DM to be {q0} where q0 is the initial state of M , and the set of
final states of DM to be the set of all X ⊆ Q such that X contains some final state of M
we have completed the construction.

By construction, each transition from a state X of DM identifies “where we might be” if
we started in one of the states of M that belongs to X and processed the given character.
So, an accepting computation in DM represents some accepting computation in M and
vice versa.

It’s worth noting that the number of states we use in DM is 2m where m is the number
of states in M . It can be shown that this exponential blow up is necessary in general.

For a fixed positive integer N , consider the following language, L, over {a, b}. A word
w ∈ L if there is some pair of b’s in the word so that the total number of a’s between
them is a multiple of N (there may be other b’s between them as well - and there need
not be any a’s, i.e. bb is in the language). It’s not immediately obvious that this language
is regular, but it’s easy to design an NFA that accepts it. This NFA has N +2 states called
S, 0, 1, 2, . . .N − 1, and F .

The start state S, has a, and b loops, as well as a b arrow to state 0. The states 0, 1, 2,
through N − 1 form a cycle with a arrows from each to the next (and from N − 1 to 0),
and b loops. Finally there is a b arrow from 0 to F , and a and b loops on F . State F is the
only accepting state.

To accept a word by this automaton we need to hang around S for a while, kick over
to the cycle using a b, run around the cycle some number of times (thereby consuming
a multiple of N a’s, while ignoring b’s) and finally kick off the cycle using another b. In
other words, we accept L.

Now consider a DFA that accepts L. Since it is not allowed to “guess”, it must know at
any point what the possible lengths of “a’s following a prior b” are modulo N . Given

6



COSC 341: Lecture 6 Non determinism

any subset X ⊆ {0, 1, 2, . . . , N − 1} it’s easy to construct a word wX where the set of
such lengths is X. Just for example, if N = 12 and X = {1, 4, 6, 7} we can take the
wX = babaabaaaba, which has 7 a’s after the first b, 6 after the second etc.

Now, I claim that if X �= Y then the state we are in when we have processed wX must be
different from that we are in when we process wY . The reason is that there is some word
v such that wXv ∈ L and wY v �∈ L or vice versa (if we were in the same state we would
have to accept or reject both of these words). For instance if k belongs to X but not to Y
(or vice versa) we can take v = aN−kb.

So, any DFA to accept L must have at least 2N states, and an exponential blow up cannot
be ruled out.

7



COSC 341: Lecture 6 Non determinism

5 Tutorial problems

1. Let M be the nondeterministic finite automaton:

0

a

1

b

2

a

b

a

a

• Trace all computations of the string aaabb in M . Is it in L(M)?

• Give a regular expression for L(M).

2. Design an NFA that accepts the language of strings over {a, b, c} whose length is
a multiple of three, and which can be divided into blocks of length three, each of
which contains each symbol exactly once.

3. Let M be the NFA

0

a

1

c

2

b

c

aλ

• Compute the λ-closure of each state.

• Construct a DFA that is equivalent to M

• Give a regular expression for L(M).

8



COSC 341: Lecture 6 Non determinism

4. Repeat the preceding question with the following automaton:

0 1

2 3

b

a

λ, a

b b
λ

a

b

5. Build an NFA that accepts (ab)∗ and one that accepts (ba)∗. Use λ-transitions to
combine them into an NFA accepting (ab)∗(ba)∗. Convert that NFA to an equivalent
DFA.

6. It’s very easy to build an NFA that accepts the language HAS-abba (just loop on a or
b in the initial state, then a chain of transitions to accept specifically abba, and then
loop on a or b in the final state). Convert this NFA to a DFA and compare the result
to the example constructed in Lecture 5.

9


