
COSC 341: Lecture 7 Languages regular and irregular

1 Introduction

The collection of regular languages, while interesting, is not rich enough to be useful.
For instance, even a simple language such as {anbn | n ≥ 0} is not regular (though, to be
frank, we have no way of proving this – yet). The notion of a grammar and in particular
of a context free grammar provides a more general way of recursively defining languages
which is still “mechanical” in some sense. In this lecture we explore this concept.

2 Rules

A rule or production rule is an expression of the form:

A → w.

The left hand side, A must be an element of a finite set V of variables or nonterminals
(generally written as upper case letters). The right hand side w must be a string in (V ∪
Σ)∗ where Σ is some fixed finite alphabet disjoint from V (whose elements are generally
written as lower case letters). The elements of Σ are also called terminals. For instance, all
of the following are rules (over appropriate alphabets):

S → aSb, S → λ, T → aTbT, T → aPbQcR.

A rule can be applied to any string in (V ∪Σ)∗ which contains the symbol occurring on the
left hand side of the rule. The result of such an application is to replace any one instance
of the left hand side by the string on the right hand side. That is, if the rule A → w is
applied to the string uAv, the result is the string uwv. We write:

uAv
A→w
=⇒ uwv

or just uAv ⇒ uwv if we don’t care to mention the rule that was applied.

3 Grammars

A context free grammar, G, is just some set of rules over fixed sets of nonterminal and
terminal symbols, together with a single distinguished nonterminal symbol (universally

1

COSC 341: Lecture 7 Languages regular and irregular

denoted S) called the start symbol.

A derivation in (or of G) is a sequence of rule applications:

v = v1 ⇒ v2 ⇒ v3 ⇒ · · · ⇒ vn = w

where each rule is one of the rules of G which we write in shorthand as v
∗⇒ w, and in

this case we say that w is derivable from v (in G).

Formally we could define derivability recursively: v is derivable from itself (base), and if
u = xAy is derivable from v and A → w is a rule of G then xwy is derivable from v.

The language of G, L(G) is:
{w ∈ Σ∗ | S ∗⇒ w}

i.e. the set of strings over the terminal symbols that are derivable from the start symbol.

4 Examples

The language of:
S → aS, S → bS, S → λ

is (a ∪ b)∗.

When a grammar has a number of rules with the same LHS they are frequently collected
together, e.g. the preceding example could be written:

S → aS | bS |λ

The language of
S → aS | bT, T → bT |λ

is a∗b+.

The language of
S → aSb |λ

is {anbn | n ≥ 0}.

2

COSC 341: Lecture 7 Languages regular and irregular

5 Derivation trees

Any derivation S
∗⇒ w has a tree associated with it. The root of this tree is labelled S.

At each individual production A → x, make the symbols of x the children of the node
corresponding to A in left to right order.

For example, consider the grammar:

S → aSa | aBCa, B → bB | b, C → cCc | cBc

and the derivation:

S ⇒ aSa ⇒ aaBCaa ⇒ aabBCaa ⇒ aabBcBcaa ⇒ aabbcBcaa ⇒ aabbcbcaa

then the corresponding derivation tree is:

S

a S

a B

b B

b

C

c B

b

c

a

a

3

COSC 341: Lecture 7 Languages regular and irregular

6 Regular grammars

A context free grammar is called a regular grammar if ever rule has one of the three forms:

A → a, A → aB, A → λ

where in the second form a ∈ Σ, B ∈ V (and B = A is allowed).

Clearly in any derivation from S in a regular grammar there will only ever be at most
one variable symbol produced, and it will always be rightmost in the current word.

From the name it’s clear that the intention is that regular languages should be produced
from regular grammars (and presumably vice versa) but we don’t yet have the mechanics
which will allow us to prove that conveniently (it could be done from the definitions, but
we will shortly be introducing another way of generating regular languages and it will
be most convenient to show that all three are equivalent to one another).

7 Regular grammars and NFAs

Recall that the rules of a regular grammar are of the form:

A → cB, A → c, A → λ.

We can actually eliminate rules of the second type by introducing a special state Z , re-
placing them by A → cZ , and having the only rule for Z be Z → λ. Having done that, we
can immediately construct an NFA that accepts the same words that a regular grammar
generates. Namely, we take its states to be the non-terminals, its initial state to be S, its fi-
nal states to be all those non-terminals for which there is a rule X → λ and its transitions
to be A

c→ B whenever there is a rule A → cB of the grammar.

We can equally well produce a regular grammar from an NFA and so we obtain:

Theorem 7.1. The collection of languages generated by regular grammars, and the collection of
languages accepted by NFAs (or DFAs) are the same.

4

COSC 341: Lecture 7 Languages regular and irregular

8 Regular languages and NFAs

We know that every regular language is accepted by some NFA. We would like to show
that the language accepted by an NFA is always regular. This is accomplished by a reduc-
tion technique which generalizes the transitions allowed in an NFA – instead of having
transitions labelled by single letters, we’ll allow them to be labelled by regular languages.

So, begin with an NFA, M , and as usual assume that it has a unique start state and a
unique distinct accepting state. For convenience we’ll also add λ-transitions from each
state, other than the initial and accepting states, of M to itself. We will construct a se-
quence of smaller and smaller NFAs with “extended transitions” that accept the same
language as M does. Suppose that we’ve done this up to some point and there are still
states other than the start and finish states remaining. Choose any such state q. Now
consider every other pair of states r and s. If there are transitions:

r
u→ q and q

v→ s

then we will add a new transition r → s as follows, let w be the language on the loop on
q and add:

r
uw∗v−→ s.

Having done this (for every pair), delete q. If we wind up with multiple transitions
between any two states replace them by a single transition whose label is the union of
their labels.

If we carry on like this we will eventually wind up with a single transition from the
initial state to the accepting state. Its label is the language accepted by M . Since the steps
we used in building labels are steps that are allowed in building regular languages, and
since the initial labels are all basic regular languages, L(M) must be regular. Thus we
have proved:

Theorem 8.1. The collections:

• regular languages,

• languages accepted by NFAs

5

COSC 341: Lecture 7 Languages regular and irregular

• languages accepted by DFAs

• languages generated by a regular grammar

are all the same.

9 Closure properties of regular languages

From the definition of regular language we know that regular languages are closed under
union, concatenation, and Kleene star. However, we can use the preceding theorem to
give us a much richer class of closure operations (i.e. many more ways of generating
regular languages from simpler ones).

• The complement of a regular language is regular. Because, we can take a DFA
accepting the language and then interchange all accepting and non-accepting states.
The new automaton accepts the complement.

• The intersection of two regular languages is regular. Because:

L1 ∩ L2 = (Lc
1 ∪ Lc

2)
c

and we already have closure under complement and union.

• If L is a regular language, then the collection of all suffixes (or prefixes) of words in
L is also a regular language. Because, we can take a DFA for L which we can assume
has the property that every state can be reached somehow from the initial state (if
there were inaccessible states we could just throw them all away without changing
the language). Now add a λ-transition from the initial state to every other state. The
resulting automaton accepts suffixes of words in L. A similar construction works
for prefixes.

• If L is a regular language, then so is Lr the language of all reversals of words in
L. This is probably most easily proven inductively from the recursive definition.
It’s certainly true for the basic languages and thereafter we have (L1L2)

r = Lr
2L

r
1,

(L1 ∪ L2)
r = Lr

1 ∪ Lr
2 and (L∗)r = (Lr)∗.

6

COSC 341: Lecture 7 Languages regular and irregular

We could extend this list even further, but the properties above are among the most use-
ful. This shows that the regular languages form a very robust set – we can build lots and
lots of them. And yet we believe that some simple languages like {anbn | n ≥ 0} are not
regular. It’s time to introduce some techniques for proving such results.

7

COSC 341: Lecture 7 Languages regular and irregular

10 Tutorial problems

“The faster you derive, the bigger the mess”

1. Let M be the NFA

0

a

1

c

2

b

c

aλ

• Compute the λ-closure of each state.

• Construct a DFA that is equivalent to M

• Give a regular expression for L(M).

2. Repeat the preceding question with the following automaton:

0 1

2 3

b

a

λ, a

b b
λ

a

b

8

COSC 341: Lecture 7 Languages regular and irregular

3. Let G be the grammar:

S → abSc |A
A → cAd | cd

(a) Give a derivation of ababccddcc and build its derivation tree.

(b) Use set notation to describe L(G).

4. Design context free grammars for the following languages (the alphabet is {a, b}
throughout). Where possible, try to design regular grammars for the same lan-
guages.

(a) L1 = {a4n |n > 0} ∪ {a3n+2 |n � 0}.

(b) The language, PALINDROME, consisting of all strings that read the same for-
wards as backwards.

(c) The language of strings that contain at least one occurrence of aa as a sub-
string.

(d) The language, EQUAL, consisting of all strings that contain the same number
of a’s as b’s.

(e) The language EVEN-EVEN consisting of all strings that contain both an even
number of a’s and an even number of b’s

9

