
L5:

Typical scaling

1

a

t

s

b

L5:

Typical Blunder

2

a

t

s

b

O SA Otago University Students Association
Nga Akonga o te Whare Wananga o Otakou

•Gain valuable skills in communication and negotiation?
•Help to resolve concerns students have with the lecturer or department?
•Act as a contact point between the class and the OUSA, so major concerns are dealt with by trained
advocates?
•Get a certificate for your efforts?

DO YOU WANT TO…

WE NEED YOU

TO BE A CLASS
REP

VOLUNTEER NOW!
 Any queries email: education@ousa.org.nz or

 educ.off@ousa.org.nz
 Phone: 479-5449

mailto:education@ousa.org.nz
mailto:education@ousa.org.nz
mailto:educ.off@ousa.org.nz
mailto:educ.off@ousa.org.nz

L5:

Typical scaling

5

a

t

s

b

L5:

Typical scaling algorithm

6

if (a/s > b/t)
 scale = b/t
else
 scale = a/s

for (all x, y)
 x = scale * x
 y = scale * y

L5:

Other operations

7

L5:

Other operations
• Stretch

x' = x * h;
y' = y * v;

• Shift

x' = x + a;
y' = y + b;

8

L5:

Rotate
• Point p
• anticlockwise

by angle t

9

 pr

t

a

r

r*sin(a)

r*cos(a)

L5:

Rotate

10

 pr

t

a

r

r*sin(a + t)

r*cos(a + t)

L5:

Expanding those a+t angles...

x' = r*cos(a + t)
x' = r*(cos(a)*cos(t) - sin(a)*sin(t))
x' = r*cos(a)*cos(t) - r*sin(a)*sin(t)
x' = r*cos(a)*cos(t) - r*sin(a)*sin(t))
x' = x*cos(t) - y*sin(t)

11

L5:

Expanding those a+t angles...

y' = r*sin(a + t)
y' = r*(cos(a)*sin(t) + sin(a)*cos(t))
y' = r*cos(a)*sin(t) + r*sin(a)*cos(t)
y' = r*cos(a)*sin(t) + r*sin(a)*cos(t)
y' = x*sin(t) + y*cos(t)

12

L5:

x' = x*cos(t) - y*sin(t)
y' = x*sin(t) + y*cos(t)

13

L5:

Notice that t is constant
si = sin(t)
co = cos(t)
for (all points p) do
 tmp = p.x
 p.x = co * p.x - si * p.y
 p.y = si * tmp + co * p.y

14

L5:

General object
transformation

• All of our computer graphics objects
consist of points or ways to find points.

• Any rotation, magnification or shift
(translation) can be applied point by
point.

15

L5:

Matrix form: scale
• The magnification by m:

x' = m * x
y' = m * y can be written:

16

m	

 0
0	

 m

x
y

x'
y'

=

L5:

Matrix form: rotate
• Rotation counter-clockwise by angle t:

17

cos t -sin t
sin t cos t

x
y

x'
y'

=

L5:

But what about shift?

18

x' = x + a
y' = y + b

L5:

Why write (x, y) as ?

19

x
y

L5:

We can use a new form:

20

x
y
1

means (x, y)

x
y
1

1	

0	

a
0	

1	

b
0	

0	

1

=
x + a
y + b
1

means (x + a, y + b)

L5:

Rotation in our new form:

21

x
y
1

cos t -sin t	

 0
sin t cos t	

 0
 0 0	

 1

L5:

Is this matrix stuff any use?
• Very much so!
• Matrix multiplication is associative

22

(A B) C = A (B C)
So ...

L5: 23

3
7
1

1	

0	

1
0	

1	

2
0	

0	

1

=
4
9
1

Shift x by 1, y by 2

4
9
1

	

 0	

 -1 0
 1	

 0 0
 	

0 0 1

=
-9
4
1

Rotate 90°

-18
8
1

2	

0	

0
0	

2	

0
0	

0	

1

=
-9
4
1

Magnify 2x

L5:

This can be expressed:

M (R (S u)))

= (M R S) u

24

L5:

Determine the
transformation matrix

25

1	

0	

1
0	

1	

2
0	

0	

1

	

 0 -1 0
 1 0 0
	

 0 0 1

2	

0	

0
0	

2	

0
0	

0	

1

2	

0	

0
0	

2	

0
0	

0	

1

0 -1 -2
1 0 1
0 	

0	

 1

=
0	

 	

-2	

-4
2	

 0 2
0	

 	

 0	

 1

L5:

Computation savings!
• Say we have 50 operations and

1,000,000 points to transform.

• We do 50 matrix multiplications and
then apply the result 1,000,000 times.

• So that is 1,000,050 operations instead
of 50,000,000!

26

L5:

More on rotation

27

L5:

How do we know the angle t?

28

a
t

L5:

Mouse dragged: (u,v) to (x,y)

29

r sin(a)

r cos(a)
a

t

x, y
u, v

L5:

Difference of angles ...
After dividing by the radius √x2 + y2 or √u2 + v2

we have x = cos(a + t), y = sin(a + t),
u = cos(a), v = sin(a).
cos(a + t) = cos(a)cos(t) - sin(a) sin(t)
x = u cos(t) - v sin(t)
sin(a + t) = sin(a)cos(t) + cos(a)sin(t)
y = v cos(t) + u sin(t)

30

L5:

Difference of angles ...
After dividing by the radius √x2 + y2 or √u2 + v2

we have x = cos(a + t), y = sin(a + t),
u = cos(a), v = sin(a).
cos(a + t) = cos(a)cos(t) - sin(a)sin(t)
x = u cos(t) - v sin(t)
sin(a + t) = sin(a)cos(t) + cos(a)sin(t)
y = v cos(t) + u sin(t)

31

L5:

Equations in sin(t), cos(t)
x = u cos(t) - v sin(t)
y = v cos(t) + u sin(t)
xv = uv cos(t) - v2 sin(t)
yu = uv cos(t) + u2 sin(t)
(yu - xv) = sin(t) (u2 + v2)
sin(t) = (yu - xv) / (u2 + v2)
cos(t) = ???

32

L5:

So you don’t need to find t.
You find cos(t) and sin(t) directly.

33

L5:

Is p right or left of a-b?

34

p b

a t

Rotate p and b to put ab onto
the x-axis.

L5: 35

p b

a t

r

cos(t) = (bx - ax)/r
sin(t) = (by - ay)/r

L5: 36

y' = x sin(-t) + y cos(-t)

p'y - ay = -(px - ax) (by - ay)/r
 + (py - ay) (bx - ax)/r

p'
b'a

p

t

L5: 37

So if p'y - ay > 0, p is on the left but
r > 0, so p is on the left iff
- (px - ax) (by - ay)
+ (py - ay) (bx - ax) > 0

Look: No sin, cos or angles!

L5:

Winding numbers

38

L5:

Our winding number w:

39

• w = left crossings - right crossings
• w = 0 means point is outside
• w = 2 or -2 means point is inside
• w = 4 means point is twice inside (or is

that outside?), etc

L5:

Alternative definitions
• Winding number is sometimes defined

directly (e.g. in textbook):
• number of times point P is anti-clockwise

encircled when tracing around the polygon

• For our fill algorithm, we just need a
consistent treatment!

40

