Painless Perspective

Which are drawn correctly?

Why do parallel lines seem to converge?

The eye as a camera

The eye as a camera

Equal distances appear smaller

Simplified camera

Simplified camera

Put the eye at the origin and view down Z-axis find x_v, y_v

Similar triangles

You know how to correct for arbitrary viepoints

 If you are not viewing from the origin, just shift your viewpoint ...

View from (a, b, c)?
Easy:

You know how to move arbirary axes to the z-axis

• If you are not viewing along the z-axis, just rotate ...

More complicated, but we did it already
Refer back to rotating around an arbitrary axis

Homogeneous coordinates $(x, y, z) = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

Homogeneous coordinates $(x, y, z) = \begin{bmatrix} wx \\ wy \\ wz \\ w \end{bmatrix}$

Homogeneous coordinates $(x/w, y/w, z/w) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

V

Perspective matrix

Remember the similar triangle results:
x_v = v x/z

• $y_v = v y/z$

Or in this form...

• Remember: v is the viewplane position

Scaled to make v=1

= (x/z, y/z, 1)

Using just these principles we can draw correct wire frame sketches from 3D models...

...but to get any further we have to deal with the visible surface problem.

Painter's Algorithm

Painter's Algorithm

Painter's Algorithm

The lost z problem

• All 'z' values end up on the viewplane!

• OK... so keep old 'z' value? maybe?

Old Hearn & Baker:

 "... where the original z-coordinate value would be retained in projection coordinates for visible surface and other depth processing."

• This has been fixed in the new edition.

Moral: Don't believe all you read