
L8:

Visible Surface
Determination

• Painter’s Algorithm
• BSP Trees
• Z-Buffer
• Ray Tracing

1

L8:

Image or object space

• Ideally an object space method converts
the 3D scene into a list of 2D areas to be
painted.

• Image space decides for each pixel
which surface to paint.

2

L8:

Image or object space

• Painter’s Algorithm! ! Hybrid
• BSP Trees ! ! ! ! Hybrid
• Z-Buffer ! ! ! ! Image
• Ray Tracing! ! ! ! Object

3

L8:

Painter’s Algorithm

4

L8:

Painter’s Algorithm

4

L8: 5

x

y

L8: 6

L8: 6

L8: 6

L8:

Depth Sorting

• Completely in front–put in front
• Not overlapping in x, y–either
• Intersecting–divide along intersection
• overlapping–divide along plane of one

polygon.

7

L8:

Which side of a plane?

8

x

y

z
p

(p - n).n = 0

n

L8:

Plane Equation

(p - n).n = 0
p.n - n.n = 0
p = (x, y, z)
n = (a, b, c)
ax + by + cz - (a2 + b2 + c2) = 0
ax + by + cz + d = 0

9

L8:

For points p and q

 if (p-n).n > 0 and (q-n).n > 0
or if (p-n).n < 0 and (q-n).n < 0

p and q are on the same side

10

L8:

BSP trees

11

L8:

BSP trees

11

L8:

BSP trees

11

L8:

Divide scene with a plane

• Everything on the same side of that
plane as the eye is in front of everything
else (from that eye’s view)

• Divide front and back with more planes
• If necessary split polygons by planes

12

L8:

• BSP trees are order n*log(n) in the
number of polygons

• They are good for VR ‘walkthroughs’
because you only re-compute traversal
when the eye crosses a separating plane

Efficiency

13

L8:

Z-Buffer

• Record r,g,b and z (depth) for each pixel.
• Process each polygon line by line and if

closer replace r,g,b,z in the buffer.

14

L8:

Scan in screen space

15

L8:

Finding the depth

• Plane equation is Ax + By + Cz + D = 0
z = - (Ax + By + D)/C

• replace x by x+1
z' = - (A(x+1) + By + D)/C
"z = z' - z = -A/C

• New z is found by adding a constant.
16

L8:

What about the lost z?

17

x
y
z
1

1!0!0!0
0!1!0!0
0!0!1!0
0!0!1!0

=
x
y
z
z

! (x/z, y/z, 1)

L8:

Perspective Transformation

• Preserve x', y'
• Preserve straight lines
• z' independent of x, y

18

L8:

Perspective Transformation

• Preserve x', y'
• Preserve straight lines
• z' independent of x, y

18

L8:

Perspective Transformation

• h = hither or near plane
• v = projection plane

19

h

v

L8:

20

h v
y,z

y'
z'

yh'

yh

z-axis0

y' = yv/z
yh' = yhv/h
(v-z')/y' = v/yh'
yh/(v-h) = y/(v-z)

L8:

21

1. y' = yv/z
2. yh' = yhv/h
3. (v-z')/y' = v/yh'
4. yh/(v-h) = y/(v-z)

L8:

22

1. y' = yv/z
2. yh' = yhv/h
3. (v-z')/y' = v/yh'
4. yh/(v-h) = y/(v-z)
(v-z')/(yv/z) = v/(yhv/h)
(v-z')/(yv/z) = v/((y(v-h)/(v-z))v/h)
(v-z')/(v/z) = v/(((v-h)/(v-z))v/h)
(v-z')z = vh/((v-h)/(v-z))

L8:

23

(v-z')z = vh/((v-h)/(v-z))
(v-z')z(v-h)/(v-z) = vh
(v-z')z(v-h) = vh(v-z)
v-z' = vh(v-z)/z(v-h)
z' = v - vh(v-z)/z(v-h)
z' = (vz(v-h) - vh(v-z))/z(v-h)
z'z = (v2z - vzh - v2h + vhz)/(v-h)
z'z = (v2z - v2h)/(v-h)
z'z = v2z/(v-h) - v2h/(v-h)

L8:

24

1 0 !0! 0
0 1 0! 0
0 0 1/(1-h)! !-h/(1-h)
0 0 1! 0

z'z = v2z/(v-h) - v2h/(v-h)
In the case where v = 1 (PHIGS GL?)
z'z = z/(1-h) - h/(1-h)

L8: 25

x
y
z
1

x
y
z/(1-h)-h/(1-h)
z

=

1 0 !0! 0
0 1 0! 0
0 0 1/(1-h)!-h/(1-h)
0 0 1! 0

L8:

Many appropriate matrices

26

• Similar matrices appear in many
different forms
• Different possible eye position, near plane and

view plane configurations
• some books include an additional

transformation to screen coordinates
• There is not one right answer!

L8: 27

L8: 28

L8: 29

L8: 32

L8: 33

