Visible Surface
Determination

* Painter’s Algorithm
* BSP Trees

» /-Buftfer
* Ray Tracing

LS:

Image or object space

* Ideally an object space method converts
the 3D scene 1nto a list of 2D areas to be
painted.

* Image space decides for each pixel
which surface to paint.

LS:

Image or object space

* Painter’s Algorithm

e BSP Trees
o /-Buffer
* Ray Tracing

Hybrid
Hybrid
Image

Object

LS:

Painter’s Algorithm

Painter’s Algorithm

Depth Sorting

* Completely 1n front—put in front
* Not overlapping in x, y—either
* Intersecting—divide along intersection

* overlapping—divide along plane of one
polygon.

LS:

Which side of a plane?

N

Plane Equation

(X, Y, Z)

(a, b, c)
ax+by+cz-(@+b*+c?)=0
ax+by+cz+d=0

For points = and

if > () and > ()
or if < (0 and <0

and are on the same side

Divide scene with a plane

* Everything on the same side of that
plane as the eye 1s in front of everything
else (from that eye’s view)

* Divide front and back with more planes

* I[f necessary split polygons by planes

Lg: 12

Efficiency

* BSP trees are order n*log(n) in the
number of polygons

* They are good for VR ‘walkthroughs’
because you only re-compute traversal
when the eye crosses a separating plane

L8: 13

Z.-Buffer

* Record r,g.,b and z (depth) tor each pixel.

* Process each polygon line by line and 1f
closer replace r,g.,b,z in the butter.

L8: 14

Scan in screen space

L8: 15

Finding the depth

* Plane equationis AX+ By + Cz+ D =0
z=-(Ax + By + D)/C

* replace x by x+1
7z =-(A(x+1) + By + D)/C
Az=17-z72=-A/C

* New z 1s tound by adding a constant.

L8: 16

What about the lost z?

1000 | x X
01001y | =Y | - (x/zvz1
0010z |z | =¥2¥eD
00101 //

L8: 17

Perspective Transformation

* Preserve x',y'

* Preserve straight lines

e 7' iIndependent of X, y

L8: 18

Perspective Transformation

_—
* Preserve x', V'

* Preserve straight lines

1

e 7' iIndependent of X, y

L8: 18

Perspective Transformation

h

* h = hither or near plane

* v = projection plane

L8: 19

y' =yv/z
Vi = ynV’h
(v-z')/y' = v/yn'

— Yw/(v-h) =y/(v-2)

L8: 20

|

A

R,
4

.Y =yV/z

Vi = ynV/h

. (v-z")/y' = v/yy'

. Vu/(v-h) = y/(v-2z)

| A

1. = = V/z

2. = v/h

3. (v-2')) =v/

4. [(v-h) = /(v-z)

(v-z')/(v/z) =v/(v/h)

(v-z")/(v/z) = v/(((v-h)/(v-z))v/h)
(v-z')/(v/z) = v/(((v-h)/(v-z))v/h)
(v-z")z = vh/((v-h)/(v-z))

SAVAR L URE VIS),
(v-z')z(v-h)/(v-z) = vh
(v-z')z(v-h) = vh(v-z)

v-z' = vh(v-z)/z(v-h)

z' =v - vh(v-z)/z(v-h)

z' = (vz(v-h) - vh(v-z))/z(v-h)

7'7 = (V2z - v2h)/(v-h)
7'z = (v2z - v2h)/(v-h)

7'z = v*z/(v-h) - v2h/(v-h)

7'Z = v?z/(v-h) - v2h/(v-h)
In the case where v =1 (PHIGS GL?)
z'z =7/(1-h) - h/(1-h)

0 0
0 0
1/(1-h) -h/(1-h)
| 0

10
01
00
00

L8: 24

100 0
010 0
0 0 1/(1-h) -h/(1-h)
001 0

X

y

2/(1-h)-h/(1-h)
Z

N et L

L8: 25

Many appropriate matrices

* Similar matrices appear in many
different forms

* Different possible eye position, near plane and
view plane configurations

* some books include an additional
transtormation to screen coordinates

* There 1s not one right answer!

L8: 26

L8: 27

LS:

33

