
L16:

Ambient, Lambert, Phong, reflection, 
refraction, point light sources.

(Slides on spatial content thanks to James Arvo and David Kirk)

1



L16:

Just the beginning...

Aliasing artefacts
No surface/surface illumination
No caustics
Real shadows are soft
Colour problems
Very slow

2



L16:

How rays propagate

3



L16:

Where are we spending the time?
1000 x 1000 pixels
Say 6 secondary rays per pixel
100k objects; 10 ops per intersection
2GHz processor; maybe 5 cycles per op
So how long to render?
And is that really all?
And: where is the time really spent?

4



L16:

Bounding Volumes
Enclose objects inside a volume with a simple 
intersection test (e.g. a sphere)

You only need to know IF the ray hits the volume, 
not where

Does this decrease or increase computation?  It 
depends…

Cost: n * B + m * I

n rays, B cost of intersection with bounding 
volume, m rays intersect bounding volume, I cost 
of intersecting with objects. 

5







L16:

Hierarchical Volumes

Put volumes within volumes
I.e., we form a tree of bounding volumes
If the volumes are placed really well, 
then we get O(log n) intersection tests
Unfortunately, it isn’t automatic
Non-spherical volumes produce tighter 
bounds, but aren’t automatic either.

8



L16:

Spatial Subdivision

Rather than adding new (invisible) 
objects as boundaries…
Let’s just divide the space.
If a picture element is called a pixel…
Then a volume element must be called?

A voxel

9







How do we 
determine the next 

voxel to test?



L16:

Cleary’s Algorithm
Ray

dx

13



L16:

Cleary’s Algorithm
Ray

dy

13



L16:

Cleary’s Algorithm
Ray

ix

13



L16:

Process

Find smallest of dx, dy, dz
increment that axis e.g: for dx, x:=x+1
update value, e.g: dx := dx + ix
check voxel x,y,z
check for end of world

14













L16:

Adaptive Subdivision

Instead of lots of little empty cells, make 
empty cells as big as possible
Use a tree structure to create a 
hierarchy of bounding cubes
You will get fewer voxels
Is there a down side?
Octrees/BSP trees/kd-trees

20











L16:

Octrees

Divide until a cell has one object or is 
too small
Facilitates raytracing CSG objects 
(later)
But the cell-skipping algorithm is NOT 
obvious
Info in “Ray Tracing News” archives

25



L16:

Neat Tricks

Limit recursion depth by contribution made to pixel

Keep a reference to the last object that caused a shadow

Do inside/outside test on triangles before plane 
intersection

Instead of:
(b - a) x (p - a).n, (c - b) x (p - b).n, (a - c) x (p - c).n
do
(b - a) x (u - a).v, (c - b) x (u - b).v, (a - c) x (u - c).v

26


