
L4:

Low level graphics software
• Points, lines and pixel-level things.

• A bit of history and some useful
techniques

1

L4:

Line and poly-lines
Drawline 0 0 1 0
Drawline 1 0 1 1
Drawline 1 1 0 1
Drawline 0 1 0 0

2

√

L4:

Line and poly-lines
Drawline 0 0 1 0
Drawline 1 0 1 1
Drawline 1 1 0 1
Drawline 0 1 0 0

2

√
√
√
√

L4:

Poly-lines
glBegin(GL_LINES);
glVertex2i(0, 0);
glVertex2i(1, 0);
glVertex2i(1, 1);
glVertex2i(0, 1);
glVertex2i(0, 0);

3

√

L4:

Poly-lines
glBegin(GL_LINES);
glVertex2i(0, 0);
glVertex2i(1, 0);
glVertex2i(1, 1);
glVertex2i(0, 1);
glVertex2i(0, 0);

3

√
√
√
√

L4:

Polygon data structure
typedef struct { double x, y; } point;
typedef point *triangle[3];

Type point = record x, y: real end;
 pstore = ^point;
 triangle = array [1 .. 3] of pstore;

4

L4:

 Why?

5

L4:

Why not arrays of vertices?
• Pointers are smaller than vertices.
• Each vertex appears only once.
• The same vertex can appear logically in

more than one triangle.

6

L4:

Drawing lines at the pixel level

7

L4:

16 x 5 Pixel Example

8

L4:

How Lines are Drawn
• So we increment y every 16/5 steps
• But 16/5 is not a whole number
• How do we choose the best pattern?

9

L4:

Bresenham 1965
• Use relative coordinates

• solve restricted problem first

• rx >= ry and ry >= 0
• use running error d
• every loop d := d - ry; x := x+1;
• sometimes d := d + rx; y := y+1;

10

L4: 11

d = rx / 2;
incr = rx - ry;
for (i = 1; i <= rx; i++)
{ x = x+1;
 if (d < ry)
 { y = y+1;
 d = d+incr;
 } else
 d = d - ry;
 pixel[x] [y] = colour;
}

L4:

How does it work?
• Basically doing division by repeated

subtraction operations.

• d is a running error term. Whenever the
error is big enough we do ++y and thus
reduce the error.

12

L4:

Filled Shapes

• We look at two approaches:
• Flood Filling
• Scan lines

13

L4:

Flood Filling

14

L4:

Flood Filling

14

L4:

Flood Filling

14

L4:

Flood Filling

14

L4:

Flood Filling

14

L4:

Flood Filling

14

L4:

Simple approach

15

void fill(pixel me)
{ pixel tmp;
 colour(me);
 for(tmp = each me-neighbour)
 { if (!coloured(tmp)) then
 fill(tmp);
 }
}

L4:

Watch the stack

16

a b c
d e f
g h i
 j

L4:

Watch the stack

16

a b c
d e f
g h i
 j

g
d
a
b
c
f
i
jh

L4:

Watch the stack

16

a b c
d e f
g h i
 j

g
d
a
b
c
f
i
jh
e

L4:

Better with a queue

17

a b c
d e f
g h i
 j

g d h a e i b f j c

L4:

Better with a queue

17

a b c
d e f
g h i
 j

g d h a e i b f j c

L4:

Better with a queue

17

a b c
d e f
g h i
 j

g d h a e i b f j c

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Better yet with runs

18

L4:

Inescapable problems

19

L4:

Don’t wait for pixels...

...Scan across raw polygon
20

L4:

Intersection calculation

21

x1, y1

x2, y2

ys

(x2 - x1)(ys - y1)

ys - y1

y2 - y1
x - x1 =

L4:

Intersection calculation

21

x1, y1

x2, y2

ys

(x2 - x1)(ys - y1)

ys - y1

y2 - y1
x - x1 =

L4:

Basic scan-line filler
• Scale polygon to screen coordinates
• For each horizontal line find all

intersections with polygon edges
• Draw in alternate line segments

22

L4: 23

Scan line

L4: 23

Scan line

L4:

Double intersection

24

L4:

Offset vertices

25

L4:

Aha!

26

