Low level graphics software

* Points, lines and pixel-level things.

A bit of history and some usetul
techniques
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Line and poly-lines

Drawline0 0 1 0 +
Drawline 1 0 1 1
Drawline 1 1 O 1
Drawline O 1 0 O
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Line and poly-lines

Drawline0 0 1 0 +/

Drawline 1 0 1 1 +/
Drawline 1 1 0 1 +/
Drawline 0 1 0 0 +/
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Poly-lines

glBegin(GL_LINES);
glVertex21(0, 0);
olVertex2i(1,0); v
olVertex2i(1, 1);

o] Vertex2i(0, 1);

ol Vertex21(0, 0);
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Poly-lines

glBegin(GL_LINES);
glVertex21(0, 0);
glVertex2i(1, 0);
glVertex21(1, 1);
o] Vertex2i(0, 1);
ol Vertex21(0, 0);

R < <
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Polygon data structure

typedef struct { double x, y; } point;
typedet point *triangle[3];

Type point = record X, y: real end;
pstore = Apoint;

triangle = array [1 .. 3| of pstore:
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Why not arrays of vertices?

* Pointers are smaller than vertices.
* Each vertex appears only once.

* The same vertex can appear logically in
more than one triangle.
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Drawing lines at the pixel level




16 x S Pixel Example




How Lines are Drawn

* SO we Increment y every 16/5 steps
* But 16/5 1s not a whole number

* How do we choose the best pattern?
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Bresenham 1965

e Use relative coordinates

* solve restricted problem first

*rXx >=ry and ry >= 0

° use running error d
eevery loopd :=d-ry; X := x+1;
e sometimes d :=d +rx; y ;= y+1;

L4: 10



d =rx / 2;

1nCcr = rx - ry,;

for (1 = 1; 1 <= rx:; 1++)
{ X = X+1;

if (d < ry)
1y = y+l;

d = d+incr;
} else

d =d - ry;

pixel[x] [y] = colour;
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How does it work?

* Basically doing division by repeated
subtraction operations.

* d 1s a running error term. Whenever the
error 1S big enough we do ++y and thus
reduce the error.
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Filled Shapes

* We look at two approaches:

* Flood Filling
°* Scan lines

L4: 13



Flood Filling




Flood Filling




Flood Filling
e




Flood Filling
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Flood Filling




Flood Filling




Simple approach

volid fill(pixel me)
{ pixel tmp;
colour(me) ;
for(tmp = each me-neighbour)

{ if ('coloured(tmp)) then
f1iLlL(tmp) ;

¥
¥
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Watch the stack




Watch the stack




Watch the stack




Better with a queue
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Better with a queue
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Better with a queue
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Better yet with runs
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Inescapable problems
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Don’t wait for pixels...

...5Can across raw polygon



Intersection calculation

X2 Y2
X=X = (Xz B Xl)(yS B yl)

Y2- Y1 \

Ys - Y1

X1s Y1
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Intersection calculation

X2 Y2
X=X = (Xz B Xl)(yS B yl)

Y2- Y1 \

Ys - Y1

X1s Y1
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Basic scan-line filler

* Scale polygon to screen coordinates

* For each horizontal line find all
intersections with polygon edges

* Draw 1n alternate line segments
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Double intersection
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Offset vertices
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Aha!
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