
L4:

Low level graphics software
• Points, lines and pixel-level things.

• A bit of history and some useful 
techniques

1



L4:

Line and poly-lines
Drawline 0  0  1  0
Drawline 1  0  1  1
Drawline 1  1  0  1
Drawline 0  1  0  0
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Poly-lines
glBegin(GL_LINES);
glVertex2i(0, 0);
glVertex2i(1, 0); 
glVertex2i(1, 1);
glVertex2i(0, 1); 
glVertex2i(0, 0);
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Poly-lines
glBegin(GL_LINES);
glVertex2i(0, 0);
glVertex2i(1, 0); 
glVertex2i(1, 1);
glVertex2i(0, 1); 
glVertex2i(0, 0);
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Polygon data structure
typedef struct { double x, y; } point;
typedef point *triangle[3];

Type point = record x, y: real end;
        pstore = ^point;
        triangle = array [1 .. 3] of pstore;
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 Why?
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Why not arrays of vertices?
• Pointers are smaller than vertices.
• Each vertex appears only once.
• The same vertex can appear logically in 

more than one triangle.
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Drawing lines at the pixel level
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16 x 5 Pixel Example
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How Lines are Drawn
• So we increment y every 16/5 steps
• But 16/5 is not a whole number
• How do we choose the best pattern?
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Bresenham 1965
• Use relative coordinates

• solve restricted problem first

• rx >= ry and ry >= 0
• use running error d
• every loop d := d - ry; x := x+1;
• sometimes d := d + rx; y := y+1;
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d = rx / 2;
incr = rx - ry;
for (i = 1; i <= rx; i++) 
{   x = x+1;
    if (d < ry) 
    {   y = y+1;
        d = d+incr;
    } else 
        d = d - ry;
    pixel[x] [y] = colour;
}
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How does it work?
• Basically doing division by repeated 

subtraction operations.

• d is a running error term. Whenever the 
error is big enough we do ++y and thus 
reduce the error.
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Filled Shapes

• We look at two approaches:
• Flood Filling
• Scan lines
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Flood Filling
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Flood Filling

14



L4:

Flood Filling
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Flood Filling
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Flood Filling
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Flood Filling
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Simple approach
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void fill(pixel me)
{ pixel tmp;
  colour(me);
  for(tmp = each me-neighbour)
  { if (!coloured(tmp)) then
      fill(tmp);
  }
}
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Watch the stack
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Better with a queue
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Better yet with runs
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Inescapable problems
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Don’t wait for pixels...

...Scan across raw polygon
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Intersection calculation
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Basic scan-line filler
• Scale polygon to screen coordinates
• For each horizontal line find all 

intersections with polygon edges
• Draw in alternate line segments
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Scan line
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Scan line
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Double intersection
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Offset vertices
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Aha!
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