Low level graphics software

* Points, lines and pixel-level things.

A bit of history and some usetul
techniques

14

Line and poly-lines

Drawline0 0 1 0 +
Drawline 1 0 1 1
Drawline 1 1 O 1
Drawline O 1 0 O

14

Line and poly-lines

Drawline0 0 1 0 +/

Drawline 1 0 1 1 +/
Drawline 1 1 0 1 +/
Drawline 0 1 0 0 +/

14

Poly-lines

glBegin(GL_LINES);
glVertex21(0, 0);
olVertex2i(1,0); v
olVertex2i(1, 1);

o] Vertex2i(0, 1);

ol Vertex21(0, 0);

14

Poly-lines

glBegin(GL_LINES);
glVertex21(0, 0);
glVertex2i(1, 0);
glVertex21(1, 1);
o] Vertex2i(0, 1);
ol Vertex21(0, 0);

R < <

14

Polygon data structure

typedef struct { double x, y; } point;
typedet point *triangle[3];

Type point = record X, y: real end;
pstore = Apoint;

triangle = array [1 .. 3| of pstore:

14

Why not arrays of vertices?

* Pointers are smaller than vertices.
* Each vertex appears only once.

* The same vertex can appear logically in
more than one triangle.

14

Drawing lines at the pixel level

16 x S Pixel Example

How Lines are Drawn

* SO we Increment y every 16/5 steps
* But 16/5 1s not a whole number

* How do we choose the best pattern?

14

Bresenham 1965

e Use relative coordinates

* solve restricted problem first

*rXx >=ry and ry >= 0

° use running error d
eevery loopd :=d-ry; X := x+1;
e sometimes d :=d +rx; y ;= y+1;

L4: 10

d =rx / 2;

1nCcr = rx - ry,;

for (1 = 1; 1 <= rx:; 1++)
{ X = X+1;

if (d < ry)
1y = y+l;

d = d+incr;
} else

d =d - ry;

pixel[x] [y] = colour;

L4: 11

How does it work?

* Basically doing division by repeated
subtraction operations.

* d 1s a running error term. Whenever the
error 1S big enough we do ++y and thus
reduce the error.

L4: 12

Filled Shapes

* We look at two approaches:

* Flood Filling
°* Scan lines

L4: 13

Flood Filling

Flood Filling

Flood Filling
e

Flood Filling

.

Flood Filling

Flood Filling

Simple approach

volid fill(pixel me)
{ pixel tmp;
colour(me) ;
for(tmp = each me-neighbour)

{ if ('coloured(tmp)) then
f1iLlL(tmp) ;

¥
¥

L4: 15

Watch the stack

Watch the stack

Watch the stack

Better with a queue

>
M-
Gl
L
© puy
W
S
=
.=
=)

L4: 17

Better with a queue

&
or
S
L2

=5

S
=
g =

=)

N Elisks
N =S WS
| Blcoiclll |
N HEE
HEEEEEEEE

L4: 17

Better with a queue

&
or
S
L2

=5

S
=
g =

=)

L | =
N =SS WS
| Blcoiclll |
N HEE
HEEEEEEEE

L4: 17

.....=== :
IIHIIE#

Be
{ter
yet with
run
S

Better yet with runs

:
Iﬂ

Better yet with runs
S

:
Iﬂ

Better yet with runs
S

:
Iﬂ

Better yet with runs
S

:
Iﬂ

Better yet with runs
S

:
Iﬂ

Better yet with runs
S

:
Iﬂ

Better yet with runs
S

.....miﬂ

Better yet with runs

B
Il m_
|
|

Better yet with runs

Inescapable problems

l. i

H “ T
miC e mi
HiC e 1
Bl s 1

Don’t wait for pixels...

...5Can across raw polygon

Intersection calculation

X2 Y2
X=X = (Xz B Xl)(yS B yl)

Y2- Y1 \

Ys - Y1

X1s Y1

L4: 21

Intersection calculation

X2 Y2
X=X = (Xz B Xl)(yS B yl)

Y2- Y1 \

Ys - Y1

X1s Y1

L4: 21

Basic scan-line filler

* Scale polygon to screen coordinates

* For each horizontal line find all
intersections with polygon edges

* Draw 1n alternate line segments

L4: 22

Double intersection

< A |

\ /N

/

Offset vertices

L4: 25

Aha!

L4: 26

