
L5:

Typical scaling

1

a

t

s

b

L5:

Typical Blunder

2

a

t

s

b

O SA Otago University Students Association
Nga Akonga o te Whare Wananga o Otakou

•Gain valuable skills in communication and negotiation?
•Help to resolve concerns students have with the lecturer or department?
•Act as a contact point between the class and the OUSA, so major concerns are dealt with by trained
advocates?
•Get a certificate for your efforts?

DO YOU WANT TO…

WE NEED YOU

TO BE A CLASS
REP

VOLUNTEER NOW!
 Any queries email: education@ousa.org.nz or

 educ.off@ousa.org.nz
 Phone: 479-5449

mailto:education@ousa.org.nz
mailto:education@ousa.org.nz
mailto:educ.off@ousa.org.nz
mailto:educ.off@ousa.org.nz

L5:

Typical scaling

5

a

t

s

b

L5:

Typical scaling algorithm

6

if (a/s > b/t)
 scale = b/t
else
 scale = a/s

for (all x, y)
 x = scale * x
 y = scale * y

L5:

Other operations

7

L5:

Other operations
• Stretch

x' = x * h;
y' = y * v;

• Shift

x' = x + a;
y' = y + b;

8

L5:

Rotate
• Point p
• anticlockwise

by angle t

9

 pr

t

a

r

r*sin(a)

r*cos(a)

L5:

Rotate

10

 pr

t

a

r

r*sin(a + t)

r*cos(a + t)

L5:

Expanding those a+t angles...

x' = r*cos(a + t)
x' = r*(cos(a)*cos(t) - sin(a)*sin(t))
x' = r*cos(a)*cos(t) - r*sin(a)*sin(t)
x' = r*cos(a)*cos(t) - r*sin(a)*sin(t))
x' = x*cos(t) - y*sin(t)

11

L5:

Expanding those a+t angles...

y' = r*sin(a + t)
y' = r*(cos(a)*sin(t) + sin(a)*cos(t))
y' = r*cos(a)*sin(t) + r*sin(a)*cos(t)
y' = r*cos(a)*sin(t) + r*sin(a)*cos(t)
y' = x*sin(t) + y*cos(t)

12

L5:

x' = x*cos(t) - y*sin(t)
y' = x*sin(t) + y*cos(t)

13

L5:

Notice that t is constant
si = sin(t)
co = cos(t)
for (all points p) do
 tmp = p.x
 p.x = co * p.x - si * p.y
 p.y = si * tmp + co * p.y

14

L5:

General object
transformation

• All of our computer graphics objects
consist of points or ways to find points.

• Any rotation, magnification or shift
(translation) can be applied point by
point.

15

L5:

Matrix form: scale
• The magnification by m:

x' = m * x
y' = m * y can be written:

16

m! 0
0! m

x
y

x'
y'

=

L5:

Matrix form: rotate
• Rotation counter-clockwise by angle t:

17

cos t -sin t
sin t cos t

x
y

x'
y'

=

L5:

But what about shift?

18

x' = x + a
y' = y + b

L5:

Why write (x, y) as ?

19

x
y

L5:

We can use a new form:

20

x
y
1

means (x, y)

x
y
1

1!0!a
0!1!b
0!0!1

=
x + a
y + b
1

means (x + a, y + b)

L5:

Rotation in our new form:

21

x
y
1

cos t -sin t! 0
sin t cos t! 0
 0 0! 1

L5:

Is this matrix stuff any use?
• Very much so!
• Matrix multiplication is associative

22

(A B) C = A (B C)
So ...

L5: 23

3
7
1

1!0!1
0!1!2
0!0!1

=
4
9
1

Shift x by 1, y by 2

4
9
1

! 0! -1 0
 1! 0 0
 !0 0 1

=
-9
4
1

Rotate 90°

-18
8
1

2!0!0
0!2!0
0!0!1

=
-9
4
1

Magnify 2x

L5:

This can be expressed:

M (R (S u)))

= (M R S) u

24

L5:

Determine the
transformation matrix

25

1!0!1
0!1!2
0!0!1

! 0 -1 0
 1 0 0
! 0 0 1

2!0!0
0!2!0
0!0!1

2!0!0
0!2!0
0!0!1

0 -1 -2
1 0 1
0 !0! 1

=
0! !-2!-4
2! 0 2
0! ! 0! 1

L5:

Computation savings!
• Say we have 50 operations and

1,000,000 points to transform.

• We do 50 matrix multiplications and
then apply the result 1,000,000 times.

• So that is 1,000,050 operations instead
of 50,000,000!

26

L5:

More on rotation

27

L5:

How do we know the angle t?

28

a
t

L5:

Mouse dragged: (u,v) to (x,y)

29

r sin(a)

r cos(a)
a

t

x, y
u, v

L5:

Difference of angles ...
After dividing by the radius √x2 + y2 or √u2 + v2

we have x = cos(a + t), y = sin(a + t),
u = cos(a), v = sin(a).
cos(a + t) = cos(a)cos(t) - sin(a) sin(t)
x = u cos(t) - v sin(t)
sin(a + t) = sin(a)cos(t) + cos(a)sin(t)
y = v cos(t) + u sin(t)

30

L5:

Difference of angles ...
After dividing by the radius √x2 + y2 or √u2 + v2

we have x = cos(a + t), y = sin(a + t),
u = cos(a), v = sin(a).
cos(a + t) = cos(a)cos(t) - sin(a)sin(t)
x = u cos(t) - v sin(t)
sin(a + t) = sin(a)cos(t) + cos(a)sin(t)
y = v cos(t) + u sin(t)

31

L5:

Equations in sin(t), cos(t)
x = u cos(t) - v sin(t)
y = v cos(t) + u sin(t)
xv = uv cos(t) - v2 sin(t)
yu = uv cos(t) + u2 sin(t)
(yu - xv) = sin(t) (u2 + v2)
sin(t) = (yu - xv) / (u2 + v2)
cos(t) = ???

32

L5:

But for a rotation matrix, you
don’t need to know t, you just
need to know cos(t) and sin(t).

So you don’t need to find t.
You find cos(t) and sin(t) directly.

33

L5:

Is p right or left of a-b?

34

p b

a t

Rotate p and b to put ab onto
the x-axis.

L5: 35

p b

a t

r

cos(t) = (bx - ax)/r
sin(t) = (by - ay)/r

L5: 36

y' = x sin(-t) + y cos(-t)

p'y - ay = -(px - ax) (by - ay)/r
 + (py - ay) (bx - ax)/r

p'
b'a

p

t

L5: 37

So if p'y - ay > 0, p is on the left but
r > 0, so p is on the left iff
- (px - ax) (by - ay)
+ (py - ay) (bx - ax) > 0

Look: No sin, cos or angles!

L5:

Winding numbers

38

L5:

Our winding number w:

39

• w = left crossings - right crossings
• w = 0 means point is outside
• w = 2 or -2 means point is inside
• w = 4 means point is twice inside (or is

that outside?), etc

L5:

Alternative definitions
• Winding number is sometimes defined

directly (e.g. in textbook):
• number of times point P is anti-clockwise

encircled when tracing around the polygon

• For our fill algorithm, we just need a
consistent treatment!

40

