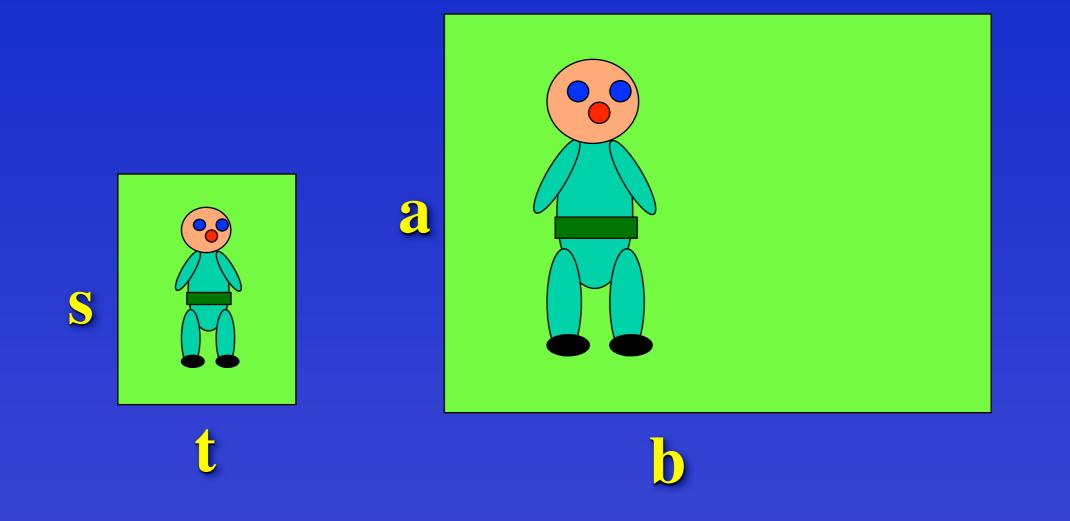
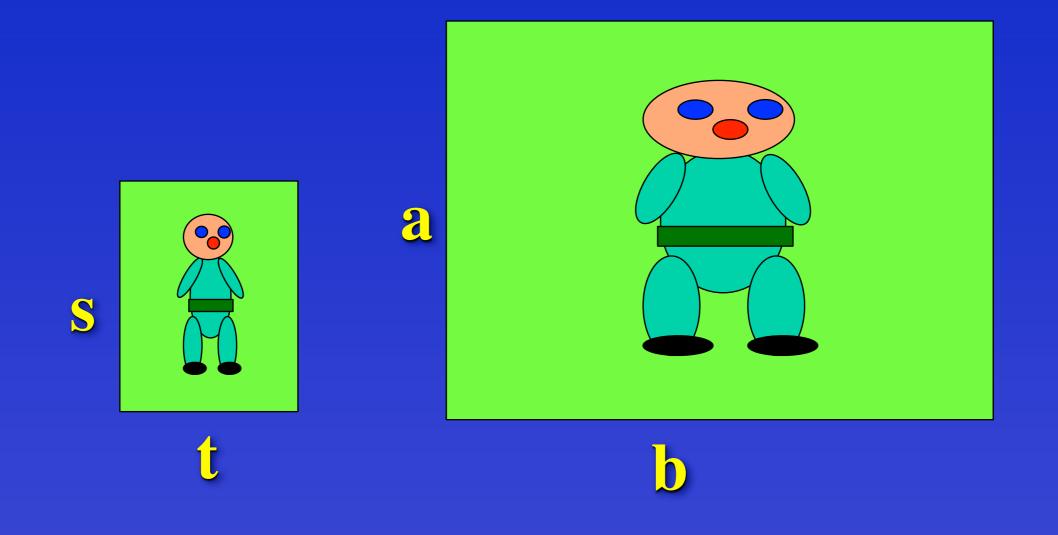
Typical scaling



Typical Blunder



Otago University Students Association Nga Akonga o te Whare Wananga o Otakou

DO YOU WANT TO...

Gain valuable skills in communication and negotiation?
Help to resolve concerns students have with the lecturer or department?

Act as a contact point between the class and the OUSA, so major concerns are dealt with by trained advocates?
Get a certificate for your efforts?

Otago University Students Association Nga Akonga o te Whare Wananga o Otakou

DO YOU WANT TO...

•Gain valuable skills in communication and negotiation?

•Help to resolve concerns students have with the lecturer or department?

•Act as a contact point between the class and the OUSA, so major concerns are dealt with by trained advocates?

•Get a certificate for your efforts?

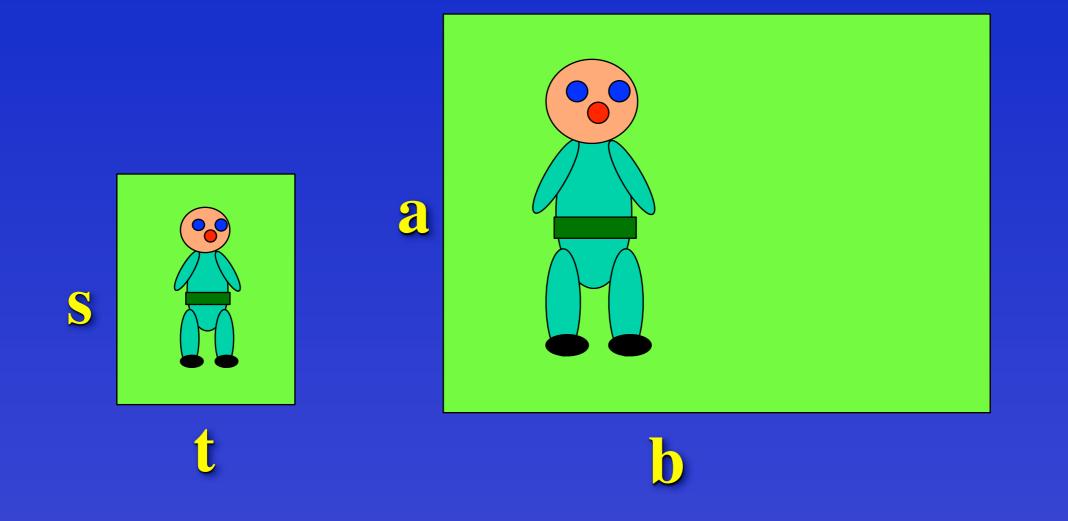
VOLUNTEER NOW!

Any queries email: education@ousa.org.nz or

educ.off@ousa.org.nz

Phone: 479-5449

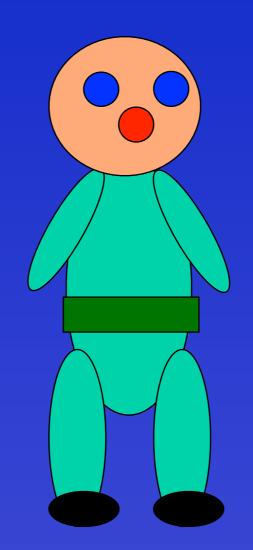
Typical scaling



Typical scaling algorithm if (a/s > b/t)scale = b/telse scale = a/s

for (all x, y)
 x = scale * x
 y = scale * y

Other operations



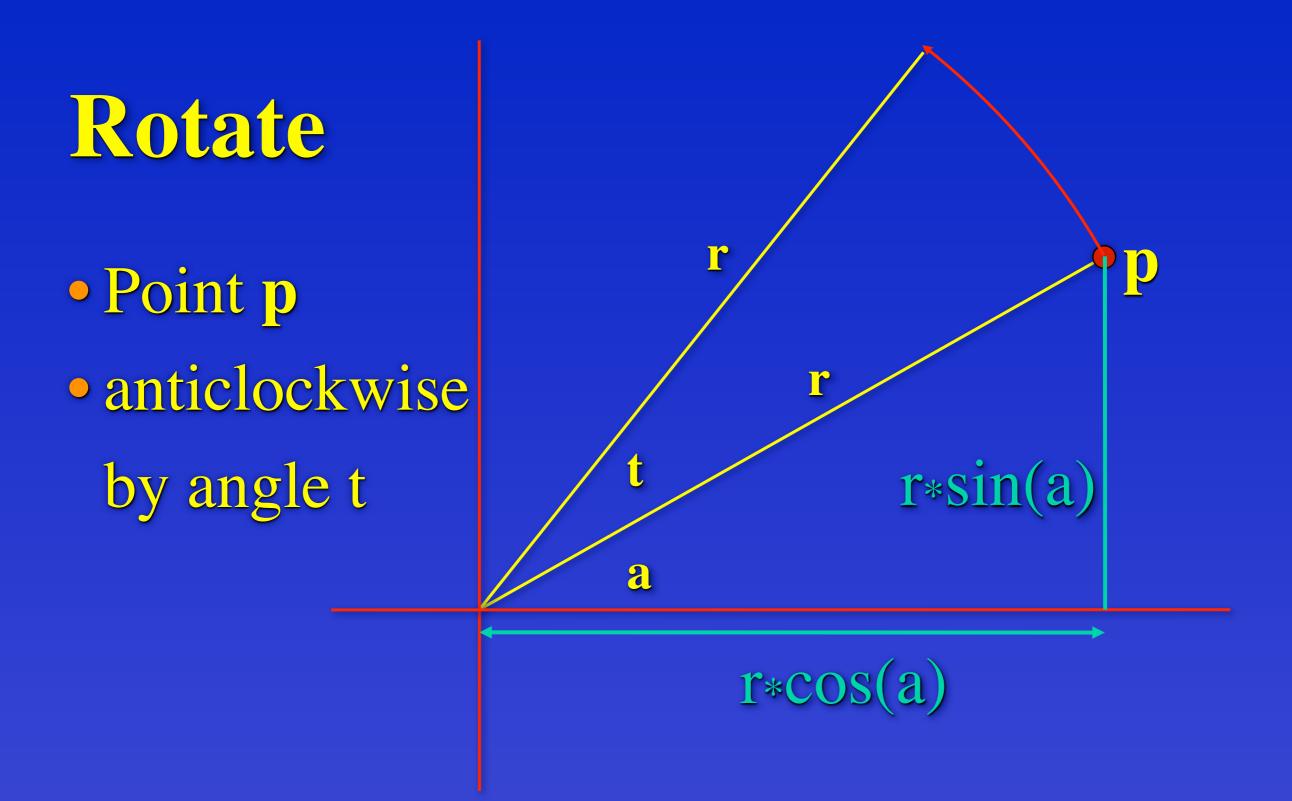
Other operations

Stretch

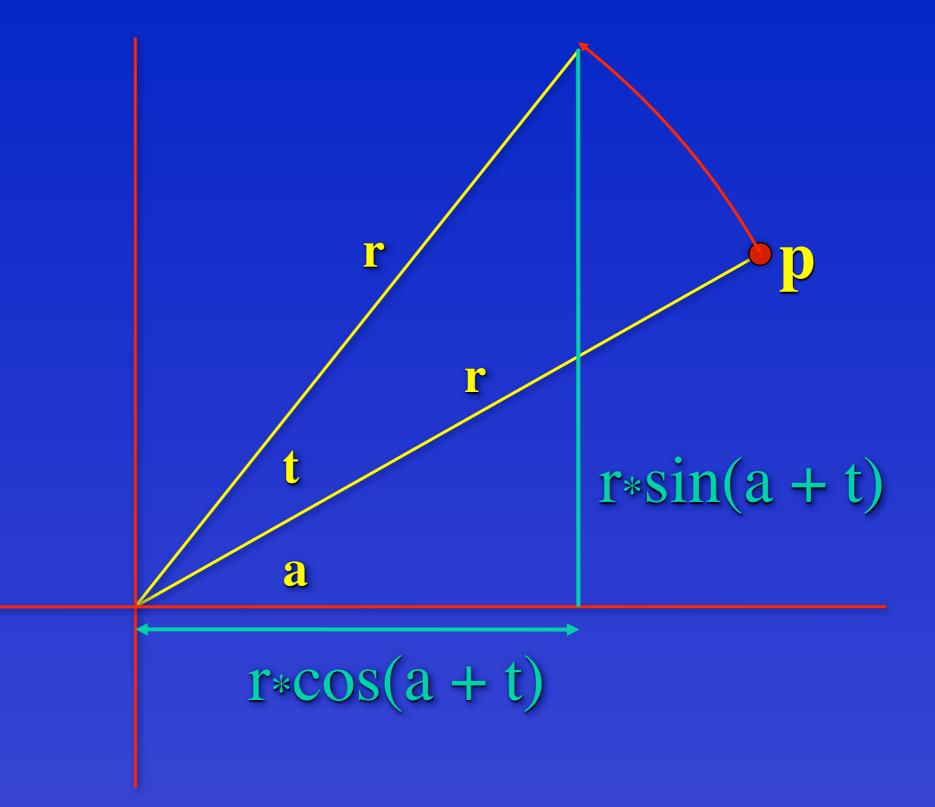
• Shift

x' = x * h; y' = y * v;

x' = x + a;y' = y + b;



Rotate



Expanding those a+t angles...

 $x' = r*\cos(a + t)$ $x' = r*(\cos(a)*\cos(t) - \sin(a)*\sin(t))$ $x' = r*\cos(a)*\cos(t) - r*\sin(a)*\sin(t)$ $x' = r*\cos(a)*\cos(t) - r*\sin(a)*\sin(t))$ $x' = x*\cos(t) - y*\sin(t)$

Expanding those a+t angles...

y' = r*sin(a + t) y' = r*(cos(a)*sin(t) + sin(a)*cos(t)) y' = r*cos(a)*sin(t) + r*sin(a)*cos(t) y' = r*cos(a)*sin(t) + r*sin(a)*cos(t) y' = x*sin(t) + y*cos(t)

x' = x*cos(t) - y*sin(t)y' = x*sin(t) + y*cos(t)

Notice that t is constant

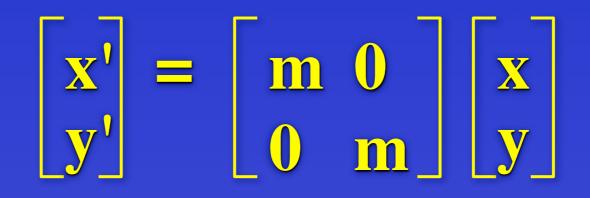
si = sin(t)co = cos(t)for (all points p) do tmp = p.x $p_x = co * p_x - si * p_y$ p.y = si * tmp + co * p.y General object transformation

 All of our computer graphics objects consist of points or ways to find points.

 Any rotation, magnification or shift (translation) can be applied point by point.

Matrix form: scale

The magnification by m: x' = m * x y' = m * y can be written:



Matrix form: rotate

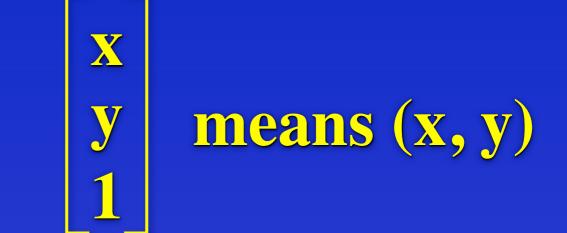
• Rotation counter-clockwise by angle t:

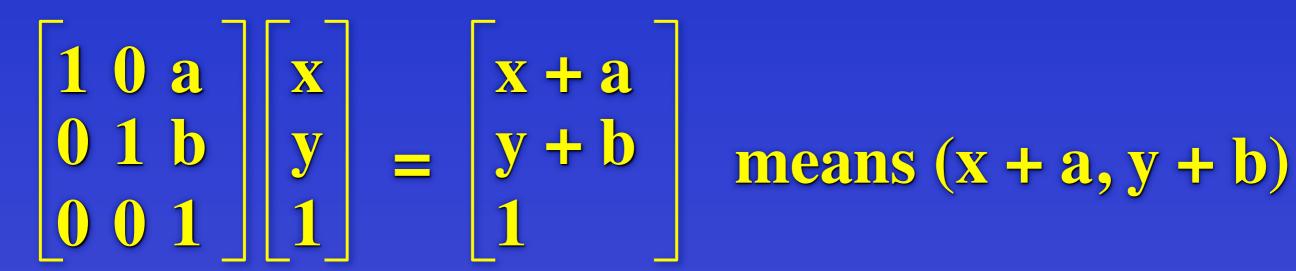
But what about shift?

x' = x + ay' = y + b

Why write (x, y) as $\begin{bmatrix} x \\ y \end{bmatrix}$?

We can use a new form:





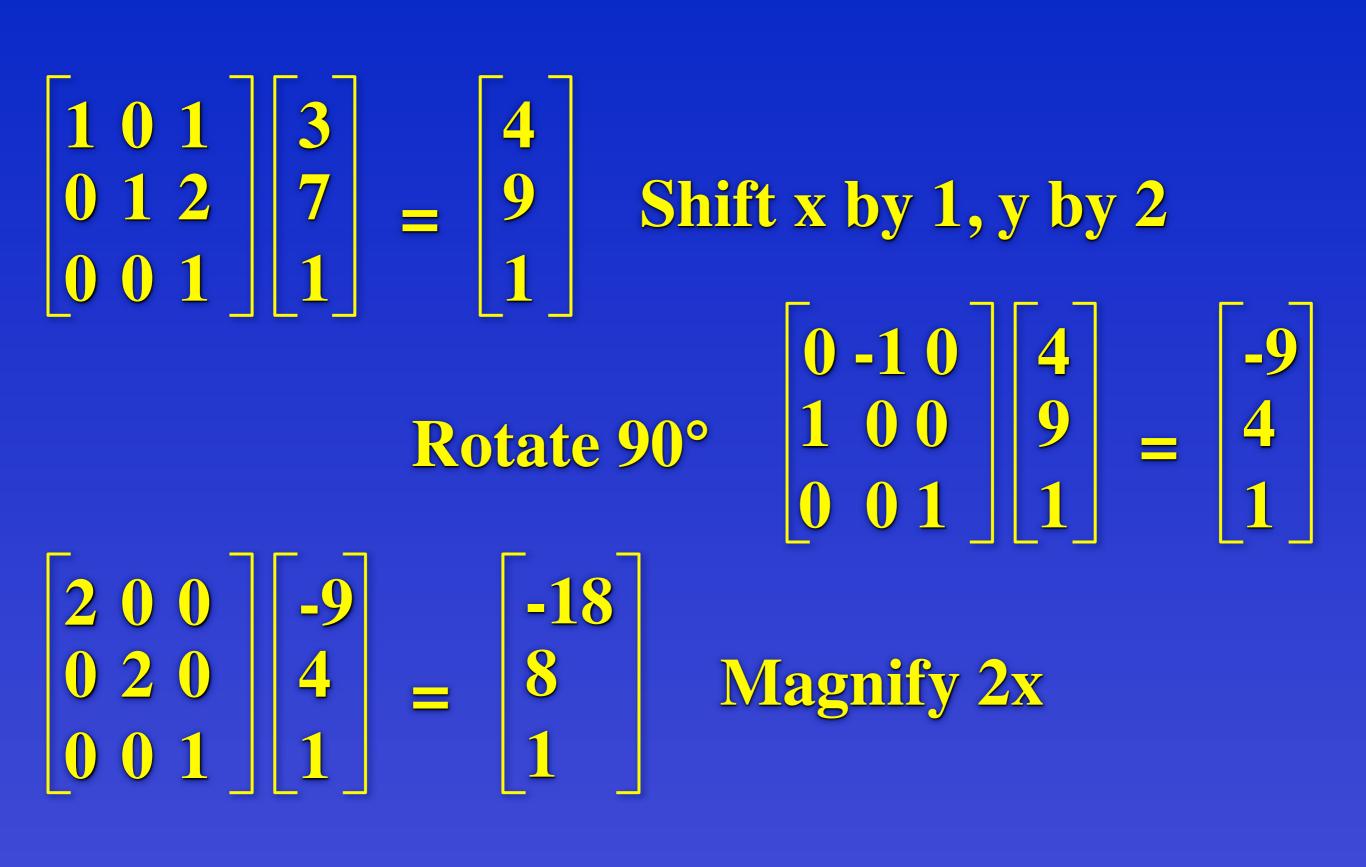
Rotation in our new form:

 $\begin{bmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Is this matrix stuff any use?

- Very much so!
- Matrix multiplication is associative

(A B) C = A (B C) $So \dots$



This can be expressed:

M(R(Su)))

= (M R S) u

Determine the transformation matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -4 \\ 2 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$

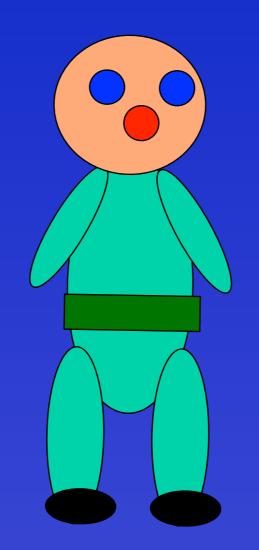
Computation savings!

 Say we have 50 operations and 1,000,000 points to transform.

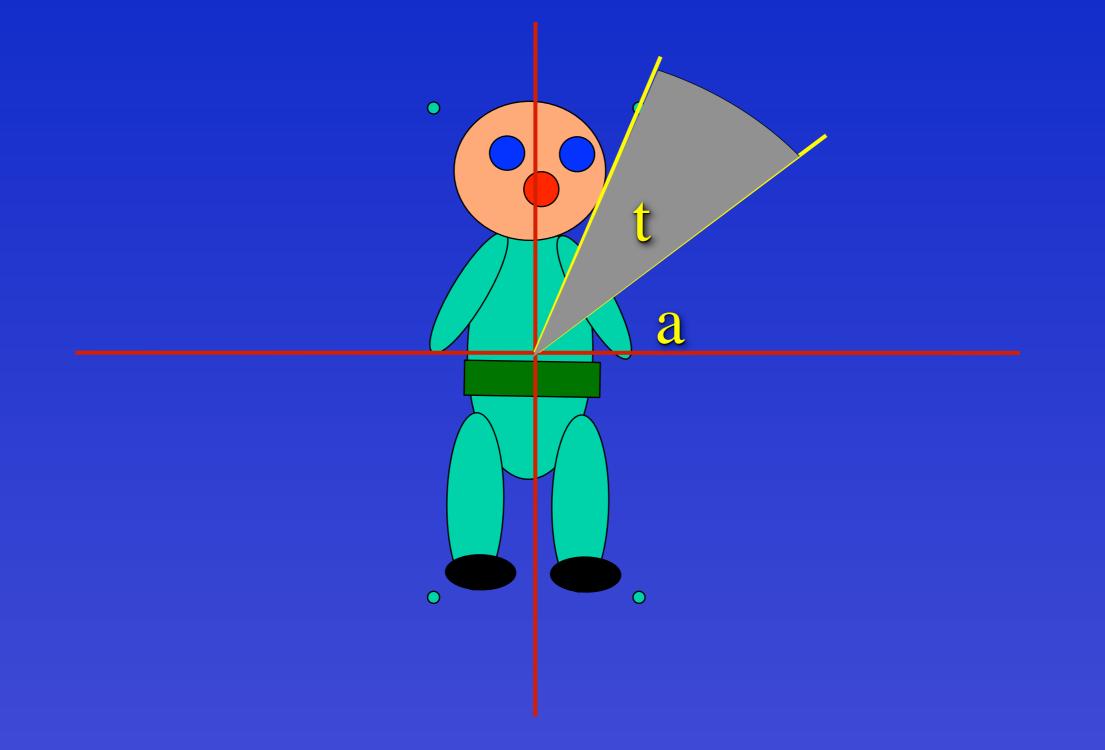
• We do 50 matrix multiplications and then apply the result 1,000,000 times.

 So that is 1,000,050 operations instead of 50,000,000!

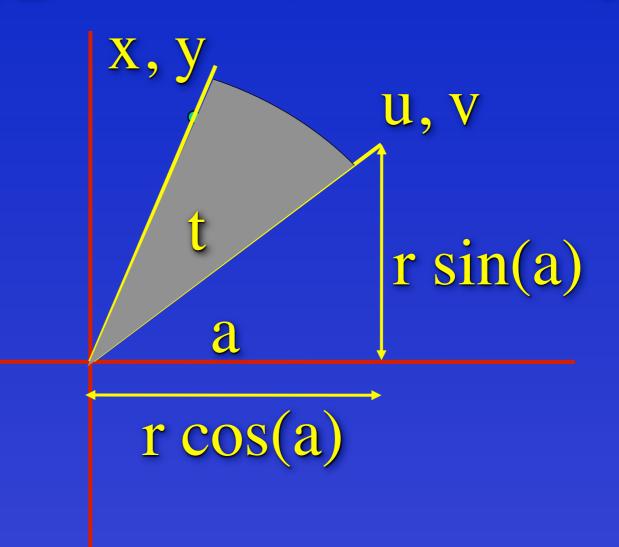
More on rotation



How do we know the angle t?



Mouse dragged: (u,v) to (x,y)



Difference of angles ...

After dividing by the radius $\sqrt{x^2 + y^2}$ or $\sqrt{u^2 + v^2}$ we have x = cos(a + t), y = sin(a + t), u = cos(a), v = sin(a). $\cos(a + t) = \cos(a)\cos(t) - \sin(a)\sin(t)$ $x = u \cos(t) - v \sin(t)$ sin(a + t) = sin(a)cos(t) + cos(a)sin(t) $y = v \cos(t) + u \sin(t)$

Difference of angles ...

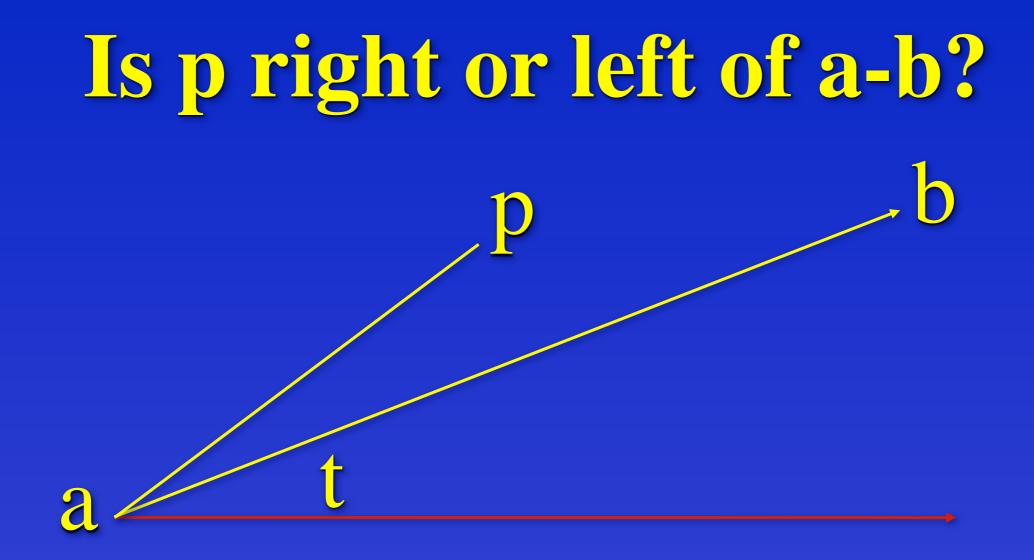
After dividing by the radius $\sqrt{x^2 + y^2}$ or $\sqrt{u^2 + v^2}$ we have x = cos(a + t), y = sin(a + t), u = cos(a), v = sin(a). $\cos(a + t) = \cos(a)\cos(t) - \sin(a)\sin(t)$ $x = u \cos(t) - v \sin(t)$ sin(a + t) = sin(a)cos(t) + cos(a)sin(t) $y = v \cos(t) + u \sin(t)$

Equations in sin(t), cos(t)

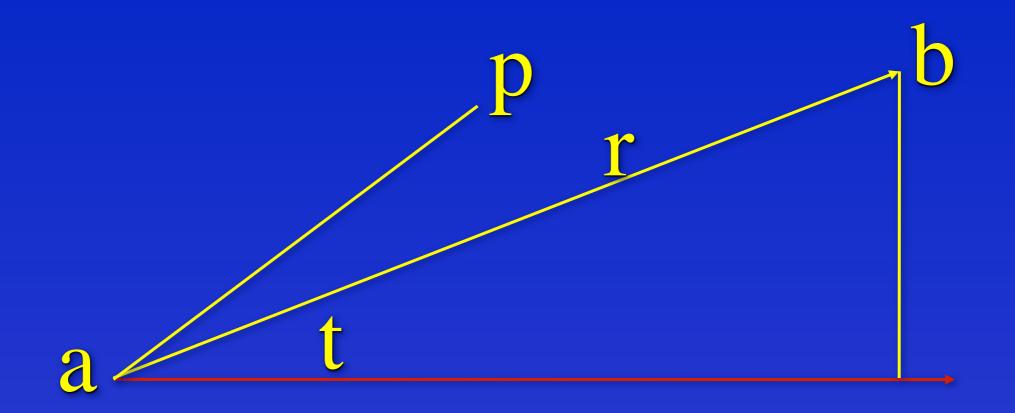
 $x = u \cos(t) - v \sin(t)$ $y = v \cos(t) + u \sin(t)$ $xv = uv \cos(t) - v^2 \sin(t)$ $yu = uv \cos(t) + u^2 \sin(t)$ $(yu - xv) = sin(t) (u^2 + v^2)$ $sin(t) = (yu - xv) / (u^2 + v^2)$ $\cos(t) = ???$

But for a rotation matrix, you don't need to know t, you just need to know cos(t) and sin(t).

So you don't need to find t. You find cos(t) and sin(t) directly.



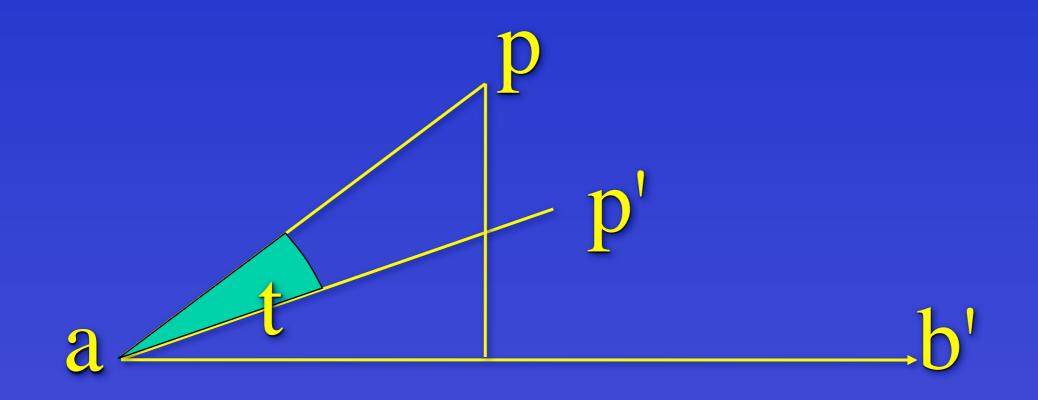
Rotate p and b to put ab onto the x-axis.



$\frac{\cos(t) = (b_x - a_x)/r}{\sin(t) = (b_y - a_y)/r}$

y' = x sin(-t) + y cos(-t)

 $p'_{y} - a_{y} = -(p_{x} - a_{x}) (b_{y} - a_{y})/r$ $+ (p_y - a_y) (b_x - a_x)/r$



So if $p'_y - a_y > 0$, p is on the left but r > 0, so p is on the left iff $- (p_x - a_x) (b_y - a_y)$ $+ (p_y - a_y) (b_x - a_x) > 0$

Look: No sin, cos or angles!

Winding numbers

Our winding number w:

w = left crossings - right crossings
w = 0 means point is outside
w = 2 or -2 means point is inside
w = 4 means point is twice inside (or is that outside?), etc

Alternative definitions

Winding number is sometimes defined directly (e.g. in textbook):
number of times point P is anti-clockwise encircled when tracing around the polygon

For our fill algorithm, we just need a consistent treatment!