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Typical Blunder
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Typical scaling
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L5:

Typical scaling algorithm
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if (a/s > b/t)
    scale = b/t
else
    scale = a/s

for (all x, y)
    x = scale * x
    y = scale * y
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Other operations
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Other operations
• Stretch

x' = x * h;
y' = y * v;

• Shift

x' = x + a;
y' = y + b;
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L5:

Rotate
• Point p
• anticlockwise

by angle t
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Rotate
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Expanding those a+t angles...

x' = r*cos(a + t)
x' = r*(cos(a)*cos(t) - sin(a)*sin(t))
x' = r*cos(a)*cos(t) - r*sin(a)*sin(t)
x' = r*cos(a)*cos(t) - r*sin(a)*sin(t))
x' = x*cos(t) - y*sin(t)
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Expanding those a+t angles...

y' = r*sin(a + t)
y' = r*(cos(a)*sin(t) + sin(a)*cos(t))
y' = r*cos(a)*sin(t) + r*sin(a)*cos(t)
y' = r*cos(a)*sin(t) + r*sin(a)*cos(t)
y' = x*sin(t) + y*cos(t)
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x' = x*cos(t) - y*sin(t)
y' = x*sin(t) + y*cos(t)
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Notice that t is constant
si = sin(t)
co = cos(t)
for (all points p) do
    tmp = p.x
    p.x = co * p.x - si * p.y
    p.y = si * tmp + co * p.y
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General object 
transformation

• All of our computer graphics objects 
consist of points or ways to find points.

• Any rotation, magnification or shift 
(translation) can be applied point by 
point.
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Matrix form: scale
• The magnification by m:

x' = m * x
y' = m * y      can be written:
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m! 0
0! m

x
y

x'
y'

=
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Matrix form: rotate
• Rotation counter-clockwise by angle t:
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cos t   -sin t
sin t    cos t

x
y

x'
y'

=
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But what about shift?
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x' = x + a
y' = y + b
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Why write (x, y) as      ?
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We can use a new form:

20

x
y
1

means (x, y)

x
y
1

1!0!a
0!1!b
0!0!1

=
x + a
y + b
1

means (x + a, y + b)



L5:

Rotation in our new form:
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x
y
1

cos t   -sin t! 0
sin t    cos t! 0
   0         0! 1
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Is this matrix stuff any use?
• Very much so!
• Matrix multiplication is associative
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(A B) C = A (B C)
So ...
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3
7
1

1!0!1
0!1!2
0!0!1

=
4
9
1

Shift x by 1, y by 2

4
9
1

! 0! -1 0
  1!  0 0
  !0  0 1

=
-9
4
1

Rotate 90°

-18
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2!0!0
0!2!0
0!0!1

=
-9
4
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Magnify 2x
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This can be expressed:

M (R (S u)))

= (M R S) u
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Determine the 
transformation matrix

25

1!0!1
0!1!2
0!0!1

!  0 -1 0
  1  0 0
!  0  0 1

2!0!0
0!2!0
0!0!1

2!0!0
0!2!0
0!0!1

0 -1 -2
1  0  1
0  !0!  1

=
0! !-2!-4
2!  0  2
0! ! 0!  1
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Computation savings!
• Say we have 50 operations and 

1,000,000 points to transform.

• We do 50 matrix multiplications and 
then apply the result 1,000,000 times.

• So that is 1,000,050 operations instead 
of 50,000,000!
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More on rotation
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L5:

How do we know the angle t?

28

a
t



L5:

Mouse dragged: (u,v) to (x,y)
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r sin(a)

r cos(a)
a

t

x, y
u, v
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Difference of angles ...
After dividing by the radius √x2 + y2 or √u2 + v2 

we have x = cos(a + t), y = sin(a + t),
u = cos(a), v = sin(a).
cos(a + t) = cos(a)cos(t) - sin(a) sin(t)
x = u cos(t) - v sin(t)
sin(a + t) = sin(a)cos(t) + cos(a)sin(t)
y = v cos(t) + u sin(t)

30



L5:

Difference of angles ...
After dividing by the radius √x2 + y2 or √u2 + v2 

we have x = cos(a + t), y = sin(a + t),
u = cos(a), v = sin(a).
cos(a + t) = cos(a)cos(t) - sin(a)sin(t)
x = u cos(t) - v sin(t)
sin(a + t) = sin(a)cos(t) + cos(a)sin(t)
y = v cos(t) + u sin(t)
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Equations in sin(t), cos(t)
x = u cos(t) - v sin(t)
y = v cos(t) + u sin(t)
xv = uv cos(t) - v2 sin(t)
yu = uv cos(t) + u2 sin(t)
(yu - xv) = sin(t) (u2 + v2)
sin(t) = (yu - xv) / (u2 + v2)
cos(t) = ???
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But for a rotation matrix, you 
don’t need to know t, you just 
need to know cos(t) and sin(t).

So you don’t need to find t. 
You find cos(t) and sin(t) directly.
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Is p right or left of a-b?
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p b

a t

Rotate p and b to put ab onto 
the x-axis.
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p b

a t

r

cos(t) = (bx - ax)/r
sin(t) = (by - ay)/r
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y' = x sin(-t) + y cos(-t)

p'y - ay = -(px - ax) (by - ay)/r 
            + (py - ay) (bx - ax)/r

p'
b'a

p

t
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So if p'y - ay > 0, p is on the left but 
r > 0, so p is on the left iff
- (px - ax) (by - ay) 
+ (py - ay) (bx - ax) > 0

Look: No sin, cos or angles!
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Winding numbers
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Our winding number w:
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• w = left crossings - right crossings
• w = 0 means point is outside
• w = 2 or -2 means point is inside
• w = 4 means point is twice inside (or is 

that outside?), etc
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Alternative definitions
• Winding number is sometimes defined 

directly (e.g. in textbook):
• number of times point P is anti-clockwise 

encircled when tracing around the polygon

• For our fill algorithm, we just need a 
consistent treatment!
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