
COSC342: Lab 03

2D Transforms in C++

March 20th 2017

1 Introduction

In the last lab you saw how to use a basic Matrix library in C++and worked
with OpenCV. In this lab you’ll use these libraries to apply basic transforms
in 2D. Online documentation for the code provided for this lab is available at
http://www.cs.otago.ac.nz/cosc342/docs/transforms2d/index.html.

The lab uses OpenCV (Computer vision library) to draw and display points
and lines. This library is not yet available on the lab machines under Linux, so
you should work under OS X. You can get the starting code for this lab from
/home/cshome/coursework/342/pickup/labs/lab03-Transforms2D

Use the command line and go to the directory where you are storing your
COSC342 work and get the files for this lab:

cp -r /home/cshome/coursework /342/ pickup/labs/lab03 -Transforms2D .

The -r option copies files recursively, and the dot, ., at the end means copy
to here.

2 Building Projects with CMake

Similar to the last lab, we will use CMake to prepare our development environ-
ment. Again there are two options supported in the lab. The two main options
are to compile code with Makefiles from the command line or to use XCode.

In your lab03-Transforms2D directory there is again a file called CMake-
Lists.txt which describes the project that needs to be made. Lets take a look
inside that:

project(transform2D)

...

add_executable(transform2D

transformMain.cpp

transforms.cpp

transforms.h

utility.h

1

http://www.cs.otago.ac.nz/cosc342/docs/transforms2d/index.html

Vector.h

Vector.cpp

Colour.h

Display.h

Display.cpp

Matrix.h

Matrix.cpp)

This is a very simple CMake file, which declares that we’re making a project
called transform2D. This is also the name of the executable program we’ll be
building, and that executable depends on the listed .cpp and .h files.

To set up the project, run the program called CMake, which is in the Appli-
cations directory. If you can’t find it press command-space and type “CMake”
to search for it. CMake asks you two simple questions – “Where is the source
code” and “Where to build the binaries”. The source code is where you copied
it to, so browse to that directory, something like
/home/cshome/a/astudent/Documents/cosc342/lab03-Transforms2D

Where to build the program is up to you, but the conventional thing to do
is to add /build to the source code location, so something like
/home/cshome/a/astudent/Documents/cosc342/lab03-Transforms2D/build

Press the Configure button. You will probably get a prompt to create the
build directory, click Yes.

You’ll next be prompted to choose a toolchain to build. You can use whatever
is installed on the machine you are using, but for the labs we’ll assume you’re
using either Unix Makefiles or XCode. Choose your preferred environment from
the drop-down, leave the other selection as Use default native compilers, and
press Done.

CMake looks for the relevant tools, and checks that they are available, then

2

updates its settings. You’ll see a number of new settings added, which are
highlighted in red. You can edit these if you need to, but you don’t. So don’t.

Finally hit the button Generate to generate your project files (either XCode
or Makefile).

2.1 Building with Makefiles

If you are using Unix Makefiles, you’ll need to go back to the terminal. Assuming
you’re in the cosc342 directory you made earlier, you’d go to the build directory
and compile the program with

cd build

make

Then run the executable you just built:

./ transform2D

You should see a window appear with axes and a grid. Several coloured squares
will be drawn, and then the window will close after a few seconds.

2.2 Building with XCode

Open the XCode project file from your build directory.

3

XCode will open and you can select the source files in the source file explorer
on the left hand side. To run the application, select the transform2D scheme
and press the run button.

You should see a window appear with axes and a grid. Several coloured
squares will be drawn, and then the window will close after a few seconds.

2.3 Adding an Application to CMake file

If you want to keep the existing project and create your own application, you
need to add a new executable to the CMakeLists.txt file. In the following
example we add an application called mytransform2D.

4

...

add_executable(mytransform2D

mytransformMain.cpp

transforms.cpp

transforms.h

utility.h

Vector.h

Vector.cpp

Colour.h

Display.h

Display.cpp

Matrix.h

Matrix.cpp)

target_link_libraries(mytransform2D ${OpenCV_LIBS})

You will also need to create the file mytransformMain.cpp – a copy of
transformMain.cpp is a good start for that.

After changing the CMakeLists.txt file you need to go back to CMake and
press Configure again and afterwards press Generate again. Then go back and
rebuild your project either with Make or XCode (depending on your selected
configuration). In XCode you should see an extra scheme called mytransform2D
and see the added files under sources.

5

3 Displaying Points and Lines

Lets have a look at transformsMain.cpp. The main routine begins by creating
a Display object. You can have a look inside the code for this object if you’re
interested, but for the purposes of this lab it is just a convenient way to draw
points and lines. A Display object is created by a constructor which takes 3
arguments:

• The width of the window in pixels

• The height of the window in pixels

• The size of each unit along an axis in pixels

So the code

Display display (800, 600, 50);

Creates an 800 × 600 window where every 50 pixels corresponds to one unit.
Since the origin is in the middle of the window, the visible part of the X-axis
runs from −(800/2)/50 = −8 to (800/2)/50 = +8. Similarly, the Y -axis runs
from −6 to +6.

There are three main things you can do with a Display object. Firstly you
can draw points, lines, and polygons with draw() methods. To draw a point,
pass its co-ordinates (in homogeneous form as a Vector with 3 elements) and a
Colour:

Vector point (3);

point (0) = 1;

point (1) = 2;

point (3) = 1;

display.draw(point , red);

Since defining Vectors by specifying their co-ordinates separately gets te-
dious, the utility.h header provides a function, point2D, to create a homoge-
neous Vector given x and y values:

Vector point = point2D (1,2); // [1,2,1]^T

There are pre-defined Colours red, green, blue, cyan, magneta, yellow,
and white, or you can create your own, such as

Colour purple (128, 0, 196); // red , green , blue values

Lines are drawn by passing two points and a colour:

display.draw(point1 , point2 , green);

Polygons are drawn by passing a std::vector of points and a colour, as illus-
trated in the sample code.

Drawing to the Display updates an internal buffer, so to view your changes
you need to call display.update(). Finally, since the window will update
quickly and close when your program ends, display.wait() will cause the
program to pause for a time, given in seconds. If not time is given, the program
pauses for 1 second. Pressing any key while paused will continue.

6

4 Working with Transforms

The rest of the code creates a square as a set of four points, draws it, then
draws some transformed versions. The transforms are 3×3 matrices, and the file
transforms.h defines some functions to make the basic transformation matrices
discussed in lectures. It also provides a multiplication operator that allows you
to apply a transformation matrix to a std::vector of Vectors as a single
operation.

Since transformations are matrices, the order of operation is important. This
is shown in the example code where the a translation by (2, 1) and a scaling
by s = 0.5 are applied. The transform T1 applies the scaling first, while T2

translates then scales.

5 Exercises

1. Change transformMain.cpp so that the following items are drawn:

• A green point at (−3, 2).

• A line from (−1, 2) to (3,−1) drawn in orange (red = 255, green =
128, blue = 0).

• A white triangle with corners (2, 2), (0, 0), and (1,−1).

• A sequence of lines running vertically between (x,−1) and (x, 1) for
x = −7,−6, . . . , 6, 7. The line’s colour should depend on x and be
(red = 128 + 15x, green = 128 − 15x, blue = 0).

2. Don’t write the code yet, but we’re going to transform the triangle from
the previous exercise so that it is scaled by a factor of 2 and then translated
left by 3 units.

• Where do you expect its corners to end up after the scaling?

• Write the code to apply the scaling, and check that it matches your
expectations.

• Where to you expect the triangle’s corners to be after both the scaling
and translation have been applied?

• Again, apply this transformation in code and see if you agree with
the result.

3. The rotation transform is not currently implemented, and rotate(angle)

just returns the 3 × 3 identity matrix.

• Update transforms.cpp so that the correct rotation matrix is re-
turned. Note that rotate() expects an angle in degrees, but the C++

trigonometric functions expect angles in radians. The file utility.h

provides functions to convert between degrees and radians.

7

• Add a rotation of 45◦ to the triangle, after it has been scaled and
shifted.

• Update your sequence of lines so that the line between (x,−1) and
(x, 1) is rotated by 10x degrees about the point (x, 0).

4. Shear is another basic transform and can be described as horizontal shear
or vertical shear. A horizontal shear can be implemented with the follow-
ing transformation matrix:

Sx =

1 m 0
0 1 0
0 0 1

The equivalent transform for a shear in the vertical direction is

Sy =

1 0 0
n 1 0
0 0 1

 .

1 2

-1

-2

1

2

-1-2 1 2

-1

-2

1

2

-1-2

• Add two new transform functions, shearX(m) and shearY(n), which
implement the shear transformation described above. You will need
to update transforms.h and transforms.cpp.

• Draw a square centred at the origin with corners at (2, 2), (−2, 2),
(−2,−2), and (2,−2).

• Draw the results of shearing the square horizontally by 1 and verti-
cally by 0.5.

5. It can be shown that rotation can be implemented as a sequence of shear-
ing operations. The details are discussed at https://www.ocf.berkeley.
edu/~fricke/projects/israel/paeth/rotation_by_shearing.html, but
the end result is that rotate(a) can be implemented as

R = shearX(-tan(a/2))* shearY(sin(a))* shearX(-tan(a/2));

8

https://www.ocf.berkeley.edu/~fricke/projects/israel/paeth/rotation_by_shearing.html
https://www.ocf.berkeley.edu/~fricke/projects/israel/paeth/rotation_by_shearing.html

• Implement a rotation of the square from part (4) by 30◦ using your
shearing operations.

• Check that the results of your sequence of shears are the same as a
direct rotation.

9

	Introduction
	Building Projects with CMake
	Building with Makefiles
	Building with XCode
	Adding an Application to CMake file

	Displaying Points and Lines
	Working with Transforms
	Exercises

