
COSC342: OpenGL Introduction

Window Creation, OpenGL, Shader Introduction

Objectives

• Open a window and create its OpenGL context

• Draw red triangle

• Pass parameters to a GLSL shader

• Render a textured cube.

Introduction

The following two labs will give you the background for writing your own render
engine. Make sure that you copy the source files from the

/home/cshome/coursework/342/pickup/labs/lab08-OpenGLIntro/ direc-
tory into a directory within your home directory. Otherwise you may not be
able to compile the code.

Part 1: Window Creation

Basics before starting

Similar to the last labs, the first step is to create the development project files.
Open CMake.app from the Applications folder. Put the source code folder
location for lab08-OpenGLIntro into source directory and add a location to
where CMake should build the project files (e.g. lab08-OpenGLIntro/build).
Click Configure and allow to create a new directory if the directory did not
exist before.

1

Select the IDE you want to use, e.g. XCode and wait until configuring is
finished. CMake will show settings and path relevant to project (we will leave
them to the default values). Press Generate to create the project files.

In the following we will explain how to compile the project with XCode, but
you can also go to the Terminal and use make to compile the project. However,
please note that now the project files are getting more complex with multiple
applications and several header and source files to edit during the lab, so XCode
is recommended.

XCode Use Finder navigate to the build directory (e.g /build). Open XCode
project file: COSC Lab OpenGL1.xcodeproj. In XCode click on ”project naviga-
tor” and navigate to Part01. Have a look at the source file SimpleWindow.cpp.
Much of this lab will involve you looking inside the files that have been pro-
vided. To compile and execute the code, go to ”Product” and ”Scheme” and
select Part01 as scheme in the list. Then go to ”Product” and click on ”Build”.
Finally run the app by selecting ”Product” - ”Run”.

MAKE (advanced) Change into the lab08-OpenGLIntro/build directory
and type “make” to build the code, and then you should be able to type
“./Part01” to run the executable code that has been generated. Part02 and
Part03 require shaders and textures from the corresponding subfolders, so you
need to navigate to the subfolder (e.g. Part02) and call ../build/Part02 from
there. If you want to avoid that, you can also use the shell scripts within the
build directory (e.g. launch-Part02.sh. This script sets the correct working
directories automatically. To run the shell script use “./launch-Part02.sh”.

Notes about CMakeList.txt Now that our project files are getting more
complex, we will have a closer look into the CMakeList file. The CMakeList.txt
contains the input into the CMake build system. Commands are:

• find package finds required libraries on the computer and sets the path
e.g. find package(OpenGL REQUIRED).

• add subdirectory configures the compilation of external directories, e.g.
add subdirectory(external).

• include directories sets the include directories so that the compiler finds
header files.

• add executable adds an executable to the project using the specified source
files.

If you want to add source files to your project use add executable to add
new files, e.g.:

1 add executab le (Part01
Part01/simpleWindow . cpp

3 common/myNewClass . hpp
common/myNewClass . cpp

5)

After changing CMakeList.txt you need to configure and generate again.

2

Source Code

Information:

• It’s mostly C++ code.

• It uses inheritance to represent objects within a scenegraph but also to
reuse code.

• It uses the OpenGL libraries, GLEW (GL extensions) and GLFW a multi-
platform library for creating windows, contexts and receiving input and
events.

Recall that C++ code generally has the following structure:

• Consists of a couple of header files (hpp) and source files (cpp)

• #include—these are header files to include.

• the main function—this is the first function called when the program is
run and contains the render loop

Overview Program Structure

If you track through the program to the “main()” function, we can see the
initialisation steps:

• In the initWindow function a window is created using glfw.

• Sets the input mode using glfwSetInputMode to ensure that keyboard
input can be captured.

• Calls renderLoop. In the first exercise, this will be a nearly empty while
loop that checks for keyboard input. Nothing will happen in the render-
Loop in this first exercise, but later on this will contain all the code for
rendering objects to the screen. You can close the window pressing the
ESCAPE button.

OpenGL specifics

The main strength of OpenGL is its relative machine independence—one prob-
lem that can exist between different machines relates to the ‘size’ of variables—
on some machines int is 16-bits, and on others it is 32-bits.

To provide a uniform look, OpenGL has its own types—and it’s recom-
mended that you use these where possible.

The main types are: GLint, (a 32-bit integer), and GLfloat (a 32-bit float).

Exercise

• Create a fullscreen window by changing the window width and height to
the appropriate values and use glfwGetPrimaryMonitor() as third parame-
ter in glfwCreateWindow. e.g. window = glfwCreateWindow(2880, 1800,
windowName.c str(), glfwGetPrimaryMonitor(), NULL);

• Change the background color from dark blue background to dark green
by modifying glClearColor in simpleWindow.cpp.

3

Part 2: Drawing coloured triangles and quads

Now that you’ve created a basic window —let’s move into part 2, and the
world of shapes. Just as in Part 1, build the executable for Part02 (again by
selecting the scheme for Part02 in XCode), and run it. The window will show a
red triangle. In the following, we will have a look how the triangle is rendered
and later on adjust the code to draw multiple triangles and change their colours
as well quads.

Red Triangle

In the main function, a triangle and a basicshader object are created. Basic-
Shader is inherited from class Shader and each object has a shader object as
member variable. In this example the shader object is added to the triangle
object and later used for transforming the triangles vertices to the screen using
the model-view projection matrix (MVP - refer to lecture about the graphics
pipeline and the vertex shader). The triangle object is then added to our simple
scenegraph (class Scenegraph) . All objects that are part of the screengraph are
rendered in the main loop. The rendering function of the scenegraph class takes
care of the rendering and also passes the MVP matrix to the shaders. We will
have a detailed explanation of the shader code later.
⇒ Read through the program code, and see what it is doing.

1 // c r e a t e a t r i a n g l e and s e t a shader
Tr iang l e ∗ myTriangle = new Tr iang l e () ;

3 // c r e a t e ba s i c shader
Shader∗ shader = new Shader (” bas icShader ”) ;

Within the triangle class definition (Triangle.cpp) we have the details how
a triangle is generated and rendered. In the init function a buffer with vertices
is created (vertex buffer object). Have a look at the organisation of the data
within the buffer: Each vertex (a point in 3D) has 3 coordinates: x, y and z.
Use the right-hand rule to get a better spatial understanding.

• X is your thumb and points to the right.

• Y is your index and points up.

• Z is your middle finger. With the thumb to the right and ndex finger up,
the middle finger will point to your back.

In the array each vertex is represented by three subsequent floats (x,y,z).
For example the first vertex is (-1,-1,0), also compare the coordinate system
and the triangle vertices in the following Figure.

The next step is to create a vertexbuffer and pass our vertex data to vertex
buffer.

g v e r t e x bu f f e r d a t a [0] = −1.0 f , g v e r t e x bu f f e r d a t a [1]= −1.0 f ,
g v e r t e x bu f f e r d a t a [2]=0 . 0 f ;

2 g v e r t e x bu f f e r d a t a [3] = 1 .0 f , g v e r t e x bu f f e r d a t a [4]= −1.0 f ,
g v e r t e x bu f f e r d a t a [5]=0 . 0 f ;

g v e r t e x bu f f e r d a t a [6] = 0 .0 f , g v e r t e x bu f f e r d a t a [7]= 1 .0 f ,
g v e r t e x bu f f e r d a t a [8]=0 . 0 f ;

4

4

// Generate bu f f e r
6 g lGenBuf fers (1 , &ve r t e xbu f f e r) ;

// bind bu f f e r to pass f o l l ow i ng commands to our bu f f e r
8 g lB indBuf f e r (GL ARRAY BUFFER, v e r t e xbu f f e r) ;

// Give our v e r t i c e s to OpenGL .
10 g lBuf fe rData (GL ARRAY BUFFER, s i z e o f (g v e r t e x bu f f e r d a t a) ,

g v e r t e x bu f f e r da t a , GL STATIC DRAW) ;

The actual rendering happens inside the scenegraph’s render method. The ren-
der method binds the corresponding shaders of each object and calls the object’s
render function. The camera parameter as input provides information about
camera placement, orientation and settings (such as the field of view (FOV)).

1 void render (Camera∗ camera) {
f o r (i n t i =0; i<sceneObject s . s i z e () ; i++)

3 {
sceneObject s [i]−>bindShaders () ;

5 sceneObject s [i]−>render (camera) ;
}

7 }

Shaders

Have a look into the basic vertex and fragment shaders: basicshader.vert and
basicshader.frag. In the basic vertex shader the incoming vertices are multiplied
with the Model-View-Projection matrix that is passed to the shader. The pa-
rameter gl Position is a GLSL built-in variable (contains the clip-space output
position of the current vertex) that is then passed to the fragment shader.

5

1 g l P o s i t i o n = MVP ∗ vec4 (ver texPos i t i on mode l space , 1) ;

In the fragment shader the output colour for each fragment is computed. In our
basic example here the output is set to a default red colour.

1 c o l o r = vec3 (1 . 0 , 0 . 0 , 0 . 0) ;

Also have a look into the BasicShader class to understand how shaders are
initialised and parameters are passed. The first step is the loading of the shaders.
This happens in initShader using the LoadShaders method. LoadShaders takes
two strings that contain the names of the vertex and the fragmentshader pro-
gram code.

1 programID = LoadShaders (vertexshaderName . c s t r () ,
fragmentshaderName . c s t r ()) ;

Every time the shader should be used in the rendering, we let OpenGL know
by using glUseProgram with the programID that we created using LoadShaders.

1 void bind () {
// Use our shader

3 glUseProgram (programID) ;
}

In order to pass parameters to the shader, we use glGetUniformLocation.
This happens in after the creation of the shaders in the initShader method.

MatrixID = glGetUniformLocation (programID , ”MVP”) ;

If this variable changes we need to let the shader know by using the matching
glUniformXXX function for our variable (in this example we have a 4x4 matrix,
so we use glUniformMatrix4fv).

1 void updateMVP(glm : : mat4 MVP) {
glUni formMatrix4fv (MatrixID , 1 , GL FALSE, &MVP[0] [0]) ;

3 }

Notes on GLSL shaders

There are different types of variables available in GLSL, such as standard
ones like float, bool, int, but also vec2,3,4 representing vectors and matrices
(mat2,3,4) representing 2x2, 3x3 and 4x4 matrices. For vectors it is impor-
tant to note that there are different ways how to access the vector elements
(swizzling):

6

• r, g, b, a are used colours representing red, green, blue, alpha (blend
factor).

• x, y, z, w are used for spatial coordinates like vectors and points.

• s, t, p, q are used for texture lookups.

For texture value (texel) access, samplers functions (e.g. sampler2D) are
used. For our examples we will use sampler2D to access 2D textures.

Exercise

• Change basicshader.frag to display a green triangle.

• Create a second triangle object and place both triangles 0.6 units apart
from each other using the method setTranslate on the triangles.

• Write a class ColorShader derived from the class Shader. ColorShader
should have a member colour (4 dimensional float vector variable for
representing RGBA, e.g. glm::vec4(0.3,0.4,0.9,1.0))) and an additional
method setColor. Remember from the OpenGL Essentials lecture how to
pass parameters to a shader. (e.g. the colour variable can be passed to
the shader using glUniform4f). Use ColorShader two create two triangles
with different colours (pass two different colour values for each triangle.
In order to use the ColorShader class in your project, add the created
ColorShader.hpp and ColorShader.cpp to your project by updating the
CMakeList.txt file (add files using add executable for Part02 in CMake-
List.txt, configure again using CMake and generate the project files again)

• Create a class Quad similar to the triangle class. A quad will consist of 2
triangles. In order to use the Quad class in your project, add the created
Quad.hpp and Quad.cpp to your project by updating the CMakeList.txt
file (add files using add executable for Part02 in CMakeList.txt, configure
again using CMake and generate the project files again). Finally create
a quad object within your program and add it to the scenegraph. Make
sure it will be rendered to the screen.

Part 3: Using Textures

So far we only used simple colouring. In the third part of the lab, we will use
texture to display image data on our rendered mesh. The background for adding
textures are:

• Texture coordinates

• Texture loading

• Texture binding

7

Texture coordinates

By using Textures coordinates (or UV coordinates) we tell OpenGL how the
texture should be mapped on our mesh. For instance, for the previous triangle
example, we need to give a textures coordinate for each vertex. This means
OpenGL will know exactly which coordinate of the texture maps to which vertex
of our triangle.

For this purpose, in addition to the vertex buffer, we have to create a buffer
that holds the textures coordinates. In our example, we encapsulated these
different buffers in an extra class called Mesh. The class Mesh allows to create
mesh objects that have vertices, texture coordinates, normals, as well as indices
(we will discuss the two latter ones in the next lab). We will use different VBO
for vertices, texture coordinates and normals in this class. For setting texture
coordinates, we use the method setUV s. As shown in the code snippet, a buffer
is generated for the uv coordinates and the content of m uvs is loaded into that
buffer.

1 void Mesh : setUVs (std : : vector<glm : : vec2> uvs) {
std : : copy (uvs . begin () , uvs . end () , m uvs . begin ()) ;

3 g lGenBuf fers (1 , &m uvBufferID) ;
g lB indBuf f e r (GL ARRAY BUFFER, m uvBufferID) ;

5 g lBuf fe rData (GL ARRAY BUFFER, m uvs . s i z e () ∗ s i z e o f (glm : : vec2) ,
&m uvs [0] , GL STATIC DRAW) ;

}

Texture loading

In order to use the texture itself, the first step is to pass the texture to OpenGL.
The steps for passing the texture is 1) create texture with glGenTextures , bind
it using glBindTexture, fill the texture with data glTexImage2D.

// Create an OpenGL texture
2 GLuint textureID ;

glGenTextures (1 , &textureID) ;
4

// ”Bind” the newly c rea ted tex ture : a l l f u tu r e t ex tu re
f unc t i on s w i l l modify t h i s t ex tu re

8

6 glBindTexture (GL TEXTURE 2D, textureID) ;

8 // Give the image to OpenGL
glTexImage2D (GL TEXTURE 2D, 0 ,GL RGB, width , height , 0 , GL BGR,

GL UNSIGNED BYTE, data) ;

Texture binding

Every time we want to use the texture, we have to bind it before rendering
the object that should be textured. For this purpose we set the active texture
using glActiveTexture. The function glBindTexture does the actual texture
binding. We use the method bindTexture of Texture for encapsulating these
steps:

1 void Texture : : bindTexture () {
// Bind our t ex ture in Texture Unit 0

3 // we j u s t use one t ex ture un i t here
g lAct iveTexture (GL TEXTURE0) ;

5 glBindTexture (GL TEXTURE 2D, m textureID) ;
}

7

Using texture in shader

To use the texture in the fragment shader, we use the texture coordinates (UV
coordinates). For accessing the texture sampler2D is used and specify which
texture is used (myTextureSampler). This will return a RGBA value that we
will then use for setting the colour output.

void main ()
2 {

// Output c o l o r = co l o r o f the t ex ture at the s p e c i f i e d UV
4 vec4 colorRGBA = texture (myTextureSampler , UV) ;

// s e t output − at the moment only rgb
6 c o l o r = colorRGBA . rgb ;
}

8

Exercise

• Change the fragment shader so that it displays the texture coordinates as
colour values.

• Add a fixed colour value to the output fragment colour to create a coloured
texture output.

• Replace the texture in the example with an photograph of your choice or
the sample picture (testimage.bmp) inside the folder Part03 and map it
on every side of the cube.

9

