Image Filtering

COSC342

Lecture 3 7 Mar 2017

In this Lecture

- Image filters
- Kernels and convolution
- Blurring mean filter, Gaussian filter
- Edge detection Sobel filters
- Separable filters

Image Filters

A filter takes an image and applies some operation at every pixel

- The same operation is applied at all pixels
- This operation produces a new value for each pixel
- Often this is viewed as an image itself, which is the result of the filter
- We will consider just greyscale images
 - Can apply filters independently to RGB colour channels
 - In HSV etc, might just apply filters to the intensity channel
- Many filters are applied in a process called convolution

Image Convolution

- We have a kernel, K, which is a $2k + 1 \times 2k + 1$ matrix of numbers
- This is applied at each point, (x, y), in an image, I as follows:

$$(I * K)(x, y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} K(i, j) I(x - i, y - j)$$

- This is called discrete convolution
 - The kernel moves over the image, and is applied to its centre pixel
 - We multiply corresponding kernel and image entries
 - The result is the sum of these products

Image Convolution

1	1	1	2	4	5	6	7
1	3	2	4	5	7	7	8
2	1	3	5	6	6	8	8
3	2	1	3	2	6	7	8
4	3	2	3	1	4	6	7
5	4	4	5	4	2	3	6
5	6	7	8	7	6	5	6
7	8	8	8	8	8	7	5

0	1/8	0
1/8	1/2	1/8
0	1/8	0

$$(I * K)(5,4) = (0 \times 5) + \left(\frac{1}{8} \times 6\right) + (0 \times 6) + \left(\frac{1}{8} \times 3\right) + \left(\frac{1}{2} \times 2\right) + \dots$$
$$= \frac{0 + 6 + 0 + 3 + 8 + 6 + 0 + 3 + 0}{8} = \frac{24}{8} = 3$$

Convolution Problems

- Some filters give negative outputs, fractions, or go out of range
 - Can round values, or change type of image data, etc.
 - Can use mid-grey as zero, white as positive, black as negative
- All filters have problems at the edges of images

- Can ignore the edges (shrinking the output image a bit)
- Can predict the values (nearest neighbour, linear models, etc.)
- Can tile or mirror the image

Blurring Filters: Mean Filters

- Mean filters take a simple average over a window
- There is a family of them depending on size -3×3 , 5×5 , etc.

These blur and smooth the image

Mean Filters

More Blurring: Gaussian Filters

- Mean filters treat all pixels equally
- There are good reasons to give more weight to pixels nearer the centre
- A common way to do this is with Gaussian filters

- The parameter σ determines how much blurring we get
 - Beyond about 3σ the values are very close to zero
 - So we can use a roughly $6\sigma \times 6\sigma$ kernel
 - Need to normalise kernel values so that they add to 1

Gaussian Filters

Edge Detection: Sobel Filters

- Another common use of filters is in edge detection
- An edge in an image is a place where the intensity changes quickly
- ► The Sobel filters detect edges in the *x* and *y*-directions:

$$S_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad S_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

• These can be combined to make a gradient vector, $\mathbf{g} = \begin{bmatrix} S_x \\ S_y \end{bmatrix}$

Sobel Filters

Separable Filters

- If we have an image with *n* pixels, applying a $k \times k$ filter is $O(nk^2)$
- This can get expensive with large filters
 - $G_{\sigma=3}$, for example is $19 \times 19 361$ multiplies and additions per pixel
- Many 2D filters can be separated into two 1D filters
 - First we apply a $1 \times k$ filter, F_x , to each pixel
 - Next we apply a $k \times 1$ filter, F_y , to each pixel
 - This has the same effect as applying the 2D filter $(F_y F_x)$

Separable Filters

$$M_{3\times3} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{pmatrix} \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \end{pmatrix}$$
$$G_{\sigma=\frac{1}{2}} \approx \begin{bmatrix} 0.04 & 0.12 & 0.04 \\ 0.12 & 0.36 & 0.12 \\ 0.04 & 0.12 & 0.04 \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.6 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 & 0.6 & 0.2 \end{bmatrix}$$
$$S_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

Other Filters

Sharpening filter

Emboss filter

Are these separable?

$$* \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\left[\begin{array}{ccc} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{array} \right] =$$

1.105

The Median Filter

- Not all filters can be implemented as convolution
- A common filter is the Median filter:
 - Sort all of the pixel values in a $k \times k$ window
 - Choose the middle value as the result

Tutorials and Labs

- This week's tutorial:
 - Matrix and vector mathematics
 - Have a go before the tutorial
 - Come along if you have any questions or issues
- Monday's Lab:
 - Matrices in C++ / OpenCV introduction