
Image Mosaicing 3

COSC342

Lecture 8
23 March 2016

Mosaicing So Far

I Mosaicing defined by a homography, p′ = Hp
I H is a 3× 3 matrix, defined up to a scale
I Can compute a homography from 4 corresponding points

I Features are points which can be accurately located in images
I Corners – points with high gradient in all directions
I Blobs – have a location and a characteristic scale

I Feature descriptors are calculated from regions around blobs/corners
I Want invariance to rotation, scale, brightness, etc.
I SIFT descriptors are widely used

I Can find matches efficiently with k-d Trees
I Only approximate matches – some will be wrong

I Need to deal with errors and uncertainty

COSC342 Image Mosaicing 3 2

Errors and Uncertainty

I Any measurement has uncertainty
I In mosaicing we measure the location of feature points

I We get uncertainty because of pixelisation
I We may not measure exactly the same feature in two images
I These errors are often modelled with Gaussian distributions

I We also have some measurements which are just wrong
I Most (∼ 70%) SIFT matches are wrong
I Removing ambiguous matches drops this to ∼ 30%
I Also k-d Trees only give approximate nearest matches

I We call these incorrect (not just uncertain) measurements outliers

COSC342 Image Mosaicing 3 3

Uncertainty and Least Squares Methods

I Gaussian errors can be accounted for by least-squares methods
I We have some measurements: mi , 1 ≤ i ≤ n
I We have a model which makes an estimate, m̂i of each measurement
I We minimise

n∑
i=i

‖mi − m̂i‖2

I If we have more than four matches, then we can easily find an H
which minimises

‖Ah− 0‖2

I This is a least-squares solution, but ‖Ah‖ doesn’t mean much

COSC342 Image Mosaicing 3 4

Uncertainty and Least Squares

I A better error to minimise comes from the original equation

p′ ≡ Hp

I Since this is an equivalence we get:

k

x ′y ′
1

 ≡
h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1


which leads to

x ′ =
h11x + h12y + h13
h31x + h32y + h33

y ′ =
h21x + h22y + h23
h31x + h32y + h33

COSC342 Image Mosaicing 3 5

Uncertainty and Least Squares

I We want to find an H which minimises

n∑
i=1

(
x ′i −

h11xi + h12yi + h13
h31xi + h32yi + h33

)2

+

(
y ′i −

h21x + h22y + h23
h31xi + h32yi + h33

)2

I This is a non-linear least squares problem

I These are hard to solve directly

I We make an initial guess (such as from solving Ah = 0)

I We can then refine this guess with a gradient descent method

COSC342 Image Mosaicing 3 6

Gradient Descent

I We want to minimise some function, f (x)

I We’re given an initial guess, x = x0
I We can approximate f (x) near x0 with

f (x) ≈ f (x0) + f ′(x0)(x − x0)

I If we set this equal to 0 (to minimise f (x)) we get

0 = f (x0) + f ′(x0)(x − x0)

x = x0 −
f (x0)

f ′(x0)

COSC342 Image Mosaicing 3 7

Gradient Descent

COSC342 Image Mosaicing 3 8

Gradient Descent

COSC342 Image Mosaicing 3 9

Gradient Descent

COSC342 Image Mosaicing 3 10

Gradient Descent Problems

I This method can sometimes take too large a step
I This often happens when the gradient is low
I If the gradient is not zero, a small enough step always helps
I Can search for the optimal step to take

I In higher dimensions error functions can get complicated
I Imagine you’re standing on the side of a river valley
I Which way does the gradient take you?
I Which way should you go to reach the sea?

I More advanced algorithms account for these problems

COSC342 Image Mosaicing 3 11

Dealing with Outliers

I These methods assume that values are uncertain, but basically correct

I Wildly incorrect values can have a huge effect on the solution

True equation is y = 0.75x + 1.5

I We saw in tutorials that RANSAC can help with this

COSC342 Image Mosaicing 3 12

RANSAC and Homography Estimation

I We need four points to estimate a homography
I So the RANSAC version is:

I Pick four correspondences at random
I Estimate H from these four points
I Count how many correspondences agree with H
I Repeat until you get a large consensus set
I Fit a least squares solution to the consensus set

I “Agreeing with an estimate of H” means that(
x ′i −

h11xi + h12yi + h13
h31xi + h32yi + h33

)2

+

(
y ′i −

h21x + h22y + h23
h31xi + h32yi + h33

)2

< d2,

where d is some distance in pixels

COSC342 Image Mosaicing 3 13

How Many RANSAC Trials?

I A common approach is just to do 1000 (or whatever) trials

I In the tutorial we had the formula

t =
log(1− p)

log
(

1−
(
n
N

)4)
)
,

I t is the number of trials we do
I p is the chance that we find an outlier-free sample
I N is the total number of matches to sample from
I n is the number of correct (inlier) matches
I 4 is the sample size for each trial.

COSC342 Image Mosaicing 3 14

How Many RANSAC Trials?

I In reality we don’t know n

I We can start off with a low estimate of n, say n = 4

I Example: N = 1000, p = 0.99

t =
log(0.01)

log
(

(1−
(

4
1000

)4) ≈ 18 billion

I As we find larger consensus sets we update this

I Suppose we find a consensus set with 200 inliers, we get

t =
log(0.01)

log
(

(1−
(

200
1000

)4) ≈ 2, 876

I As we make more trials, t never increases

I Eventually we’ve done t trials and can stop

COSC342 Image Mosaicing 3 15

Homography Estimation

I Find feature points in each image

I Compute feature descriptors
I Find (approximate) correspondences

I Can do this efficiently with a k-d Tree
I Can find two nearest matches and reject ambiguous ones

I Use RANSAC to find an initial guess of H and an consensus set

I Remove the outlier correspondences

I Find a least-squares solution from the inlier set

COSC342 Image Mosaicing 3 16

Mosaicing in OpenCV

I You’ve already seen a little OpenCV in the labs
I OpenCV has all the things we need for image mosaicing:

I Reading and writing images in many formats
I Feature detection and description, including SIFT
I Feature matching with k-d Trees
I Homography estimation with RANSAC
I Image warping and compositing

I There is also a stitching module, but we’ll use more generic functions

COSC342 Image Mosaicing 3 17

OpenCV Basics

I OpenCV uses a cv::Mat structure for images and matrices
I These can be of different types, some common examples are:

I CV_8UC3 – 8 bit unsigned (8U), 3 channel (C3) images (RGB)
I CV_8UC1 – 8 bit unsigned, single channel images (greyscale)
I CV_64F – 64 bit floating point, single channel (assumed) matrices

I Since these can be either images or matrices, there is a choice
I Index by (x , y) which makes sense for images
I Index by (row, column), which makes sense for matrices

I Accessing pixel/matrix values is a little awkward

image.at<cv::Vec3b >(y,x)[0] = 128; // Set Blue value of a pixel

matrix.at<double >(r,c) = 1.5; // Set value of a matrix

COSC342 Image Mosaicing 3 18

Reading and Displaying Images

cv:: namedWindow("Display");

cv::Mat image = cv:: imread("filename.png");

cv:: imshow("Display", image);

cv:: waitKey (10);

I cv::imread by default loads images as colour (CV_8UC3) images
I You can pass a second parameter to alter this:

I CV_LOAD_IMAGE_GRAYSCALE Load the image as greyscale
I CV_LOAD_IMAGE_UNCHANGED load the image as stored in the file

I cv::waitKey takes a time to wait in milliseconds or a key is pressed

I If you give no time, it waits indefinitely until a key is pressed

I It returns the character code of the key pressed

I It triggers OpenCV’s event loop, so refreshes the window display

COSC342 Image Mosaicing 3 19

Feature Detection

I OpenCV has a number of feature detectors implemented

I These produce a list of cv::KeyPoint objects

I There are also various descriptors that can be computed

I These include SIFT, which works on greyscale images

std::vector <cv::KeyPoint > keypoints;

cv::Mat descriptors;

cv::Mat grey(image.size(), CV_8UC1));

cv:: cvtColor(image , grey , CV_BGR2GRAY);

cv::SIFT sift;

sift.detect(grey , keypoints);

sift.compute(grey , keypoints , descriptors);

COSC342 Image Mosaicing 3 20

Displaying Keypoints

I The keypoints have positions, orientations, and scales

I We can display them with

cv::Mat keypointImage(image.clone());

cv:: drawKeypoints(image , keypoints , keypointImage , CV_RGB (0,255,0),

cv:: DrawMatchesFlags :: DRAW_RICH_KEYPOINTS);

cv:: imshow("Display", keypointImage);

cv:: waitKey ();

COSC342 Image Mosaicing 3 21

Matching Keypoints

I OpenCV supports both brute force and k-d Tree based matching

I The k-d Tree approach lets us find more than one potential match

cv:: FlannBasedMatcher matcher;

std::vector < std::vector < cv:: DMatch > > matches;

matcher.knnMatch(descriptors1 , descriptors2 , matches , 2);

I The cv::DMatch structure stores the match information

I The index of the first feature is queryIdx, and the second is trainIdx

I This comes from the use of image matching for search

I The distance associated with the match is also returned

COSC342 Image Mosaicing 3 22

Detecting Ambiguous Matches
I We get back two possible matches for each point
I We can check the distances to see if they are ambiguous or not
I Lowe suggests a ratio of 0.8 as a useful threshold

std::vector < cv:: DMatch > goodMatches;

for (size_t i = 0; i < matches.size(); ++i) {

if (matches[i][0]. distance < 0.8* matches[i][1]. distance) {

goodMatches.push_back(matches[i][0]);

}

}

COSC342 Image Mosaicing 3 23

Homography Estimation

I OpenCV includes a homography estimation routine

I This has a number of approaches, one of which is RANSAC

I We supply it with an error threshold in pixels

I First we need to make lists of corresponding feature locations

cv::Mat H(3,3,CV_64F);

std::vector <cv::Point2d > points1;

std::vectro <cv::Point2d > points2;

for (size_t i = 0; i < goodMatches.size(); ++i) {

points1.push_back(keypoints1[goodMatches[i]. queryIdx].pt);

points2.push_back(keypoints2[goodMatches[i]. trainIdx].pt);

}

H = cv:: findHomography(points1 , points2 , CV_RANSAC , 2.0);

COSC342 Image Mosaicing 3 24

Aligning the Images
I The homography can now be used to align the two images
I We make a large image to store the mosaic, and warp each image to it
I The first image can use an identity transform, the second uses H

cv::Mat mosaic(cv::Size (1000, 1000), cv::8 UC3);

cv::Mat I = cv::Mat::eye(3,3,CV_64F);

cv:: warpPerspective(image1 , mosaic , I, mosaic.size(),

cv:: INTER_CUBIC + cv:: WARP_INVERSE_MAP , cv:: BORDER_TRANSPARENT);

cv:: warpPerspective(image , mosaic , H, mosaic.size(),

cv:: INTER_CUBIC + cv:: WARP_INVERSE_MAP , cv:: BORDER_TRANSPARENT);

COSC342 Image Mosaicing 3 25

Aligning Multiple Images
I If the images come in a sequence we can chain together homographies
I We initialise a transform, T, as the identity matrix for the first image
I For the ith image we compute the homography to the (i − 1)th image
I We update T← H(i−1)→iT, then use T to warp the ith image

cv::Mat T = cv::Mat::eye(3,3,CV_64F);

cv:: warpPerspective(image[0], mosaic , T, ...);

for (int i = 1; i < numImages; ++i) {

// Compute H to align image[i] to image[i -1]

T = H*T;

cv:: warpPerspective(image[i], mosaic , T, ...);

}

COSC342 Image Mosaicing 3 26

