3D Transformations

COSC342

Lecture 9 28 March 2017

So What's This All About?

- Generalisation of the ideas from 2D
- Homogeneous co-ordinates etc.
- Transformations in 3D
- Rotations in 3D
 - Rotation about the X-, Y- or Z-axis
 - Rotations about an arbitrary axis

3D Co-ordinates

- We now need to move from 2D to 3D
- Many ideas are much the same as in 2D:
 - Homogeneous co-ordinates
 - Scaling and translation
- Some things are more complicated:
 - ▶ We have a choice of 'left-handed' or 'right-handed' co-ordinates
 - Rotations get much more complex
- One important new thing:
 - Projection from 3D to 2D

Left- and Right-Handed Co-ordinates

Left-handed

Thumb is X-axis Forefinger is Y-axis Middle finger is Z-axis

Right-handed

Fingers curl from Xaxis to Y-axis Thumb points along Z-axis

Homogeneous Co-ordinates in 3D

• In 3D we represent the point (x, y, z) as the family of 4-vectors

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \to k \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}, k \neq 0$$

• The vector $\begin{bmatrix} a & b & c & d \end{bmatrix}^T$ corresponds to the point (a/d, b/d, c/d)• The basic transformations are now 4×4 matrices

Translation and Scaling in 3D

- Translation and scaling are simple extensions from 2D
- Translation by $(\Delta x, \Delta y, \Delta z)$ becomes

$$\begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + \Delta x \\ y + \Delta y \\ z + \Delta z \\ 1 \end{bmatrix}$$

Scaling by a factor s becomes

$$\begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} sx \\ sy \\ sz \\ 1 \end{bmatrix} \equiv \begin{bmatrix} x \\ y \\ z \\ 1/s \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/s \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation in 3D

- Rotation in 3D is much more complex than in 2D
- Rotation in 3D has 3 'degrees of freedom'
- There are may ways to think about this
 - ▶ We'll start with rotations around the X-, Y- and Z-axes
 - Yaw, pitch, and roll
 - Rotation by some angle about an arbitrary axis

Rotation About X, Y and Z

We know that a 2D rotation matrix looks like this:

$$\mathbf{R}_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

- ▶ This tells us how x and y change when we rotate from X towards Y
- ▶ In 3D rotating from X to Y is rotation about the Z-axis
- The Z value is unchanged, so we get

$$\mathbf{R}_{Z} \mathbf{v} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0\\ \sin(\theta) & \cos(\theta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z\\ 1 \end{bmatrix} = \begin{bmatrix} x\cos(\theta) - y\sin(\theta)\\ x\sin(\theta) + y\cos(\theta)\\ z\\ 1 \end{bmatrix}$$

Rotation About X, Y and Z

- We can think of rotation about the other axes in the same way
- Rotation about the X-axis is a rotation from Y to Z

$$\mathbf{R}_{X}\mathbf{v} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y\cos(\theta) - z\sin(\theta) \\ y\sin(\theta) + z\cos(\theta) \\ 1 \end{bmatrix}$$

Rotation about the Y-axis is a rotation from Z to X

$$R_{Y}\mathbf{v} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0\\ 0 & 1 & 0 & 0\\ -\sin(\theta) & 0 & \cos(\theta) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z\\ 1 \end{bmatrix} = \begin{bmatrix} x\cos(\theta) + z\sin(\theta)\\ y\\ -x\sin(\theta) + z\cos(\theta)\\ 1 \end{bmatrix}$$

Rotation About X, Y and Z

Rotated by 90° around the Y-axis Rotated by 90° around the Z-axis

Gimbal Lock

- It turns out you can do any rotation with 3 angles
- ▶ These are called *Euler angles*
- There's a choice of axes and order
 - ▶ XYZ, YXZ, YZX, etc. (6 options), or
 - ZXZ, XYX, YXY, etc. (6 options)
- All options lead to gimbal lock
 - It is possible to rotate so that two axes are aligned
 - This removes one degree of freedom
 - You lose the ability to directly rotate in one axis

Roll, Pitch, and Yaw

Another way to think about rotation

Often these rotations are in terms of the object, not fixed axes

Any 3D rotation can be expressed as rotation about a single axis

- Given an axis and an angle, how do we find a rotation matrix?
 - 1. Rotate the world so that the axis aligns with the X-axis
 - 2. Rotate by the required angle around the X-axis
 - 3. Undo the rotations from step (1)

• The axis is
$$a = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}^T$$

- First we rotate this so that it is in the X-Z plane
- We rotate about Z by $-\alpha$

$$h = \sqrt{a_x^2 + a_y^2}$$
$$\cos(\alpha) = \frac{a_x}{h}$$
$$\sin(\alpha) = \frac{a_y}{h}$$

 \blacktriangleright We don't need to solve for α

. . .

$$A = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 & 0\\ \sin(-\alpha) & \cos(-\alpha) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 & 0\\ -\sin(\alpha) & \cos(\alpha) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{a_x}{h} & \frac{a_y}{h} & 0 & 0\\ -\frac{a_x}{h} & \frac{a_y}{h} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Next we rotate about Y by $-\beta$

$$r = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$\cos(\beta) = \frac{h}{r}$$

$$\sin(\beta) = \frac{a_z}{r}$$

$$B = \begin{bmatrix} \frac{h}{r} & 0 & -\frac{a_z}{r} & 0\\ 0 & 1 & 0 & 0\\ \frac{a_z}{r} & 0 & \frac{h}{r} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Then rotate about X by θ

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- ► Finally undo B then A
- The full transform is

 $T = A^{-1}B^{-1}CBA$ $= A^{\mathsf{T}}B^{\mathsf{T}}CBA$

Coming up...

- Assignment 1 due in about 2 weeks.
- Tutorial this week
 - RANSAC
 - Thinking in 3D
 - Bring pen, paper, and imagination
- Next lecture
 - Projection and cameras
 - Drawing 3D objects in 2D images