
Ray Tracing Efficiency and Quality

COSC342

Lecture 20
16 May 2017



Ray Tracing Efficiency and Quality

I Efficient Ray Tracing
I Space subdivision
I Bounding boxes
I Ray grouping

I Higher Quality
I More rays
I Super sampling

COSC342 Ray Tracing Efficiency and Quality 2



Ray Tracing is Expensive

One ray, one object is not too bad

I Compute intersections

I Determine colour

But we don’t just do one ray

I One ray per pixel

I HD image: ≈ 2 million rays

I Intersections per ray per object

I 1000 objects: ≈ 2 billion hits

I Lighting, shadows, reflection,
refraction, . . .

COSC342 Ray Tracing Efficiency and Quality 3



Uniform Space Subdivision

Most rays miss most objects

I Can we predict this?

I Divide space into a grid

I Objects lie in some cell(s)

I Cast ray through the grid

I Only check objects in the cells
the ray passes through

I Roughly order objects on ray

I Stop at first hit.

COSC342 Ray Tracing Efficiency and Quality 4



Cleary & Wyvill’s Algorithm (1988)

What cells to check?

I dx – distance to X boundary

I dy – distance to Y boundary

I dz – distance to Z boundary

I ix – ray length across cell in X

I iy – ray length across cell in X

I iz – ray length across cell in X

iy

ix

dy

dx

COSC342 Ray Tracing Efficiency and Quality 5



Cleary & Wyvill’s Algorithm

cell = (X, Y, Z) // Starting point of the ray

while (inside the scene and no hit):

dMin = min(dx, dy, dz)

if (dMIn == dx)

cell = (X+1, Y, Z)

dx += ix

else if (dMin == dy)

cell = (X, Y+1, Z)

dy += iy

else

cell = (X, Y, Z+1)

dz += iz

hit = intersect(ray, objects[cell])

COSC342 Ray Tracing Efficiency and Quality 6



Quadtrees and Octrees

Objects are not spread evenly

I Tend to cluster together

I Large objects cross many cells

Recursive subdivision:

I Divide in half on each axis

I Divide cells with many objects

I Repeat until some limit

I 2D gives quadtrees

I 3D gives octrees

Octree vs. uniform subdivision:

I Adapts to the scene

I Usually more efficient

COSC342 Ray Tracing Efficiency and Quality 7



Bounding Boxes

Some ray-object checks are easy

I Spheres are simple

I Cubes, cylinders etc. are fine

I Triangle meshes etc. get hard

Most rays miss most objects

I Approximate complex objects

I Wrap them in a sphere/cube

I Intersect ray with wrapper

I If it misses, ignore the object

I Otherwise do full computation

COSC342 Ray Tracing Efficiency and Quality 8



Ray Grouping

Many rays are quite similar

I Rays from neighbouring pixels

I Shadow rays from same area

They will have similar processing

I Traverse similar cells

I Intersect similar objectd

Efficient to do these together

I Better memory/cache usage

I Parallel execution (SIMD)

COSC342 Ray Tracing Efficiency and Quality 9



Antialiasing and Super Sampling

We can now afford more rays

I More reflections, lights,
objects, . . .

I More rays per pixel

I This overcomes ‘jaggies’

Aliasing and artefacts

I Ray either hits or doesn’t

I Causes blocky edges

I These are artefacts of the
pixel grid

Super sampling

I Cast several rays per pixel

I Average the results

COSC342 Ray Tracing Efficiency and Quality 10



Sampling Methods

Where to cast the rays from?

I Inside pixels?

I At corners?

I Regular grids?

I Random sampling?

Jittering

I Regular sampling can cause
artefacts and aliasing

I Random sampling can miss
parts of the pixel

I Jittering – Random offsets
from a regular grid

COSC342 Ray Tracing Efficiency and Quality 11



Adaptive Sampling

Cast rays where needed

I Cast rays at pixel corners
I If all are the same colour . . .

I Stop

I If not . . .
I Cast more rays

I Can do this recursively

I Weight colours by area

COSC342 Ray Tracing Efficiency and Quality 12


