
COSC343 Assignment 2

Evolve a species
Weight:14% Lecturer: Lech Szymanski

For this assignment, you will implement a genetic algorithm to optimise the fitness of a
species of creatures in a simulated two-dimensional world. The world should contain
edible and poisonous foods, placed at random, and a population of monsters (your basic
zombies). A whimsical illustration is given below. Your creatures are the smileys; the blue
things are the monsters; the strawberries are edible food; the mushrooms are poisonous
food. The algorithm should find behaviours that keep the creatures well fed and not dead.

Task 1: Implementation (5 marks)

You can implement the simulation in any language you like. The brief is very open: you can
implement the above description however you like. I’ll give a more detailed specification
in this section, which you can implement to the letter or adapt as you wish.

Data representation

The locations of the strawberries and mushrooms are stored in two n×m arrays, strawb array

and mushroom array, placed randomly (with the constraint that strawberries and mush-
rooms can’t occupy the same square). Each cell of each array contains a number, indicating
the quantity of food of the given type on the associated square.

Creatures are represented in a 1-dimensional array of creature structures. Each creature

structure holds the state of the creature, which comprises an energy level, and a location
on the n×m grid. Monsters are represented in a similar 1-dimensional array of monster
structures, each of which holds a location.

Creatures have senses that allow them to detect food and monsters in their local neigh-
bourhood (see next section). Monsters can detect creatures in their local neighbourhood.
To implement these functions, it’s useful to store the locations of creatures and monsters

1



in two additional n×m arrays: creature array and monster array. This makes it more
efficient to find the items in any given neighbourhood: we just need to search the neigh-
bourhood, rather than searching over all creatures/monsters. These arrays should hold
integer values, representing the number of creatures/monsters on each square.1

Creature and monster capabilities

Each creature’s energy level is decremented by a small fixed increment at each timestep.
If it runs out of energy it is dead.

A creature has some hardwired senses, telling it about things present in its current square,
or in its current neighbourhood, at the current time step. (A neighbourhood is a square
region of the world, centred on the creature’s location.) The senses are implemented by a
family of six sensory functions.

• strawb present returns a Boolean (1 or 0) indicating the presence/absence of straw-
berries at the current location. mushroom present does the same for mushrooms.

• nearest strawb returns the direction to move in towards the nearest strawberry in
its current neighbourhood. (Directions are North, East, South and West.) If there
are no strawberries in the neighbourhood, the function returns zero. There are similar
functions nearest mushroom, nearest monster, and nearest creature.

A creature can also perform an action at each timestep. Each kind of action requires a
certain amount of energy, and lowers the creature’s energy level by this amount.

• It can move (North, South, East, West, one square at a time). The direction of
movement can be random, but it can also be relative to the directions returned by
its senses: it can move towards or away from the nearest X in its neighbourhood.

• It can eat—which will consume one unit of food from its current square (provided
there is some). (To reflect this, the value of the relevant location in strawb array

or mushroom array should be decremented by some constant after each eat action.)
Eating a unit of strawberries increases the creature’s energy by some fixed amount
(greater than the energy required to do the ‘eat’ action). Eating a unit of mushrooms
reduces its energy level to zero (i.e. kills it).

Monsters move towards the nearest creature in their neighbourhood (or at random if
there’s no creature in the neighbourhod). So that monsters move slower than creatures,
this operation only happens once every f timesteps. If a monster and a creature share the
same frame, the creature dies.

1These values must obviously be kept in synch with the locations held in the creature and monster

structures: when a creature moves from square (10, 10) to (10, 11), you must update the location in its
creature structure, but also decrement creature array(10,10) and increment creature array(10,11).

2



Creature chromosones

Each creature also has a chomosone, which specifies a mapping from the information
gained through sensory functions to actions. There are 13 positions in the chromosone:

1 2 3 4 5 6 7 8 9 10 11 12 13

The first six positions specify the action associated with each of the sensory functions. The
seventh position specifies a default action.

Posn Role Possible values
1 action to do when mushroom present eat/ignore
2 action to do when strawb present eat/ignore
3 action on nearest mushroom towards/away from/random/ignore
4 action on nearest strawb towards/away from/random/ignore
5 action on nearest creature towards/away from/random/ignore
6 action on nearest monster towards/away from/random/ignore
7 default action random/north/east/south/west

Thus, position 1 specifies what the creature will do when it senses a mushroom in its
current square (either eat it or ignore it); position 3 specifies what the creature will do
when it senses a nearby square with mushrooms (move towards it, move away from it, or
ignore it). Position 7 specifies the action to do if sensory stimuli aren’t recommending any
actions (i.e. if there are no sensory stimuli, or if the only stimuli present are ones for which
the action is ‘ignore’). Positions 8–13 hold numbers, that specify weights for actions 1–6,
to determine what to do if multiple actions are activated.

8 action 1 weight number
9 action 2 weight number

10 action 3 weight number
11 action 4 weight number
12 action 5 weight number
13 action 6 weight number

For instance, if the chromosone sets up the creature to eat when it’s in a location with
strawberries (posn 2 = ‘eat’) and to move away from the nearest monster if there’s one
nearby (posn 6 = ‘away from’), it needs a way of deciding what to do when it’s at a
strawberry and there’s a nearby monster. This policy is implemented in the numbers at
positions 9 and 13, that hold the weights of the alternative actions: if the number at
position 9 is higher, it will eat, otherwise it will run away. (Note that if the action for a
sensory condition is ‘ignore’, it’s not in the competition.)

3



You will have to write code for your creature that implements the above specification. It
will look something like this:

Procedure select_action

Initialise actions_list to the empty list

For sensory functions 1-6:

Compute the result of the function

If the result is non-zero:

Calculate the associated action (by look-up in the chromosone)

If the action is not ’ignore’:

Add the action to actions_list

If actions_list is empty:

Do the default action (posn 7 in the chromosone)

Else:

Determine which of the competing actions has the strongest weight

(posns 8-13 in the chromosone)

Return this action.

Creature evolution

You will simulate a number of generations of your species, each consisting of a popula-
tion (of a fixed size p). Each simulation will last for a fixed number of time steps t. At
each time step, each creature performs one action; monsters perform one action every f
time steps.

At the end of each simulation, the fitness of each creature is determined by its energy level.
You will then create a new generation of creatures, of the same size as the previous gen-
eration (i.e. containing k individuals), by iteratively selecting two ‘parent’ creatures
(based on their fitness) and creating a ‘child’ creature using crossover and mutation (as
discussed in Lecture 14).

Implementation hints

• If you want to use Python for this assignment, you could plot points and change
their location or colour over time. (You could plot creatures as dots, with a colour
dependent on their energy level, and plot food as dots with a colour or size dependent
on quantity.) But feel free to use another animation method if you prefer.

• While a nice graphical presentation of the simulation will be appreciated, no marks
awarded for how nice it is.

4



• It’s a good idea to get the behaviour of the creatures and monsters working before
you start thinking about evolution, obviously.

Task 2: Report (5 marks)

You should also write a report about your simulation. The report should include:

• A description of your simulation. This just needs to specify how your simulation
differs from the specifications set out here.

• A graph showing how average fitness of the population changes as evolution proceeds.

• A description of how evolution shaped your creatures’ behaviour.

• An explanation for the choice of your programming language and how to get your
code to compile and/or run (if its not Python).

5



Marking scheme (Total: 10 marks)

Marks will be allocated as follows:

• Task 1: 5 marks. This task will be assessed by a demo of your simulation during
your tutorial in Week 10. In the demo, you must show me two things:

– An animation of your world showing the behaviour of the initial population,
before any evolution has happened;

– An animation of the world showing the behaviour of the final population in your
simulation, after several generations of evolution;

(You can make movies of these if you like.) Marks won’t be added for variations
on the assignment spec, but they won’t be subtracted either (provided your code
implements the scenario in the very first paragraph).

During the demo, you should be prepared to answer questions about the simulation.2

• Task 2: 5 marks. Marks will be awarded for clarity of the report, and for addressing
the topics you need to discuss.

Submission

The assignment is due at 4pm on Tuesday of Week 10 (10 May). You should
submit a zipped file with your code for Task 1 and the report for Task2 via e-mail to
mark343@cs.otago.ac.nz, by 4pm that day. Though the code will be in the language of
your choice, please make sure that you submit a working project, so that if I wanted to
run it myself, I could. Your report should be either in PDF format, Microsoft Word, Open
Office, or any standard format I can open on OS X without too much hassle.

The demo for Task 1 will be done in your tutorial in Owheo later that week.

For each task, you will lose 10% of available marks for each day late.

2Even if you don’t get evolution working fully, marks will still be awarded for implementation of the
appropriate creature and monster behaviours: i.e. even if you ‘hard code’ sensible behaviours, rather than
learning them, you’ll still get some marks.

6


