
COSC344 Lecture 19 1

COSC344
Database Theory and Applications

Lecture 19
 Indexing (2)

COSC344 Lecture 19 2

Overview
•  Last Lecture

– Database indexing
•  Single-Level Ordered Index
•  Multi-Level Index

– Source: Chapter 17
•  This Lecture

– Dynamic Multi-Level Index
•  Trees
•  B -trees
•  B+-trees

– Source: Chapter 17
•  Next Lecture

– Database security and integrity
– Source: Chapter 25

COSC344 Lecture 19 3

Multilevel Indexes

•  First level considered an ordered file
•  Second level is a primary index on the first level

– one entry per block in first level
•  Repeat the process for other levels
•  bfri is the blocking factor for the index
•  Used on

– primary
– clustering
– secondary

•  Problems with insertions/deletions

COSC344 Lecture 19 4

Multilevel
Indexes
(cont.)

The levels except the first
level are primary index.

COSC344 Lecture 19 5

Brief Tree Review

• Root
• Parent and Child
•  Leaf node
•  Internal node
• Descendant nodes
• Subtree
•  Level
• Balanced

COSC344 Lecture 19 6

Search Trees

•  A search tree of order p is
– Each node contains at most p-1 search values and p pointers

in the order <P1, K1, P2, K2, . . ., Pq-1, Kq-1, Pq> where q ≤ p.
– Each Pi is a pointer to a child or a NULL pointer.
– Each Ki is a search value
– All search values are assumed be unique.
– Two constraints

• Within each node, K1 < K2 . . . < Kq-1

•  For all values X in the subtree pointed by Pi, we have Ki-1 <
X < Ki for 1 < i < q, X < Ki for i = 1, and Ki-1< X for i = q

COSC344 Lecture 19 7

Search Trees (cont.)

COSC344 Lecture 19 8

Search Trees (cont.)

COSC344 Lecture 19 9

Search Trees(cont.)
•  Not guaranteed to be balanced
•  Tree balance is sensitive to insertion

order
•  Goals for balancing a search tree

– Nodes are evenly distributed so that
the depth of the tree is minimized

– Make the search speed uniform
•  Deletion may leave near empty nodes
•  Another goal

– The index tree does not need too
much restructuring as records are
inserted into or deleted

COSC344 Lecture 19 10

B-Trees
•  A B-tree is a search tree with additional constraints:

– The tree is always balanced.
– The space wasted by deletion, if any, never becomes

excessive.
•  Each internal node is of the form

 <P1, <K1,Pr1>, P2, <K2,Pr2>, . . ., Pq-1<Kq-1,Prq-1>, Pq>
 Pi: a tree pointer to another node in the B-tree
 Pri: a data pointer to the record with search key value of Ki

COSC344 Lecture 19 11

B-Trees (cont.)
•  At least half full

–  Each node has at most p tree pointers, and has at least
 ⎡p/2⎤ tree pointers except the root and leaf nodes.
•  A node with q tree pointers has q-1 search key field values

and hence q-1 data pointers
•  Balanced

– All leaf nodes are at the same level, and their tree pointers
are NULL.

COSC344 Lecture 19 12

B-Trees (cont.)

Insertion and deletion become more complex in order to
maintain these constraints

COSC344 Lecture 19 13

B-Trees (cont.)

Example: For a B-tree on a nonordering key field with p=23,
assume that each node of the B-tree is 69% full.
 1. Each node, on the average, will have p*0.69=23*0.69≈16
 pointers and 15 key field values
 2. The average fan-out fo=16.
 3. The number of pointers and values at each level
 Root: 1 node 15 key entries 16 pointers
 Level 1: 16 nodes 240 key entries 256 pointers
 Level 2: 256 nodes 3840 key entries 4096 pointers
 Level 3: 4096 nodes 61440 key entries

COSC344 Lecture 19 14

B+-Trees

•  Most implementations of a dynamic multilevel index use a
variation of B-tree called B+-tree
– Data pointers are stored only at the leaf nodes of the tree.
– The structure of leaf node differs from the structure of the

internal nodes.
– Leaf nodes are usually linked together for ordered access

on the search field

COSC344 Lecture 19 15

B+-Trees (continued)

COSC344 Lecture 19 16

B+-Trees (continued)

COSC344 Lecture 19 17

 Internal Node of a B+-Tree
•  Assume a B+-tree of order p

– Each internal node is of the form <P1, K1, P2, K2, . . ., Pq-1,
Kq-1, Pq> where q ≤ p.

– Each Pi is a tree pointer.
– Within each node, K1 < K2 . . . < Kq-1
–  For all values X in the subtree pointed at by Pi

•  X ≤ Ki for i = 1
•  Ki-1 < X ≤ Ki for 1 < i < q
•  Ki-1 < X for i = q

– Each internal node has at most p tree pointers.
– Each internal node, except the root and leaf nodes, has at

least ⎡p/2⎤ tree pointers. The root node has at least two tree
pointers if it is an internal node.

– An internal node with q tree pointers, q ≤ p, has q-1 search
key field values.

COSC344 Lecture 19 18

 Internal Node of a B+-Tree
•  Assume a B+-tree of order p

– Each internal node is of the form <P1, K1, P2, K2, . . ., Pq-1,
Kq-1, Pq> where q ≤ p.

– Each Pi is a tree pointer.
– Within each node, K1 < K2 . . . < Kq-1
–  For all values X in the subtree pointed at by Pi

•  X ≤ Ki for i = 1
•  Ki-1 < X ≤ Ki for 1 < i < q
•  Ki-1 < X for i = q

– Each internal node has at most p tree pointers.
– Each internal node, except the root and leaf nodes, has at

least ⎡p/2⎤ tree pointers. The root node has at least two tree
pointers if it is an internal node.

– An internal node with q tree pointers, q ≤ p, has q-1 search
key field values.

COSC344 Lecture 19 19

 Leaf Node of a B+-Tree
•  Each leaf node is of the form

–  < <K1, Pr1>, <K2, Pr2>, . . . , <Kq-1, Prq-1>, Pnext>
 where q ≤ p
•  Each Pri is a data pointer.
•  Pnext points to the next leaf node of the B+-tree.
•  Within each node, K1 < K2 . . . < Kq-1

•  Each Pri is a data pointer that points to the record whose
search field value is Ki or to a file block containing the record
(or to a block of record pointers that point to records whose
search field value is Ki if the search field is not a key).

•  Each leaf node has at least ⎡p/2⎤ values.
•  All leaf nodes are at the same level.

COSC344 Lecture 19 20

Characteristics of B+-Trees

•  By starting at the leftmost node, it is possible to
traverse leaf nodes as a linked list.

•  More entries can be packed into an internal node of a
B+-tree than for a similar B-tree
– No data pointers in the internal nodes in a B+-tree

•  B*-Tree - each node must be 2/3 full

COSC344 Lecture 19 21

Search with B+ Trees
 Algorithm: Search for a record with Search Key Field Value K.
 n <- block containing root node of B+-tree;
 read block n;
 while (n is not a leaf node of the B+-tree) do
 begin
 q<- number of tree pointers in node n;
 if K≤n.K1 (*n.ki refers to the ith search field value in node n *)
 then n<- n.P1 (* n.Pi refers to the ith tree pointer in node n *)
 else if K> n. Kq-1
 then n <- n.Pq

 else begin
 search node n for an entry i such that n.Ki-1<K<n.Ki;
 n<- n.Pi;
 end;
 read block n;
 end;
 Search block n for entry (Ki, Pri) with K=Ki; (*search leaf node*)
 if found
 then read data file block with address Pri and retrieve record
 else the record with search field value K is not in the data file;

block access

block access

block access

COSC344 Lecture 19 22

Search Example
Block size: B=512 bytes
Block pointer: BP=6 bytes
Record pointer: PR= 7 bytes
Search Key: S = 9 bytes
Num_of_records: R = 30,000

(1)  The orders p and pleaf of the B+ Tree
 p*BP+(p-1)*S ≤ B p≤ 34
 pleaf*(PR+S)+BP≤ B pleaf ≤ 31

(2) The number of leaf-level blocks needed if nodes are 69% full.

 ceiling(R/(ceiling(pleaf*0.69))) =1364

COSC344 Lecture 19 23

Search Example (cont.)

(2) The number of block access needed to search for and retrieve a
record from the file based on the primary key using the B+ tree

 fo = ceiling(0.69*p) = ceiling(0.69*34) = ceiling(23.46) = 24

 Level 0: ceiling(3/fo) = 1
 Level 1: ceiling(57/fo) = 3
 Level 2: ceiling(1364/fo) = 57
 Level 3: 1364

 Block access is 4+1=5

COSC344 Lecture 19 24

Disadvantages of Indexes

•  Indexes add overhead when inserting, deleting, and
possibly updating.

•  In a mass load, add the index after the data is loaded.

COSC344 Lecture 19 25

Indexes in SQL

CREATE INDEX <name>
 ON <table> (column [ASC | DESC]
 [, column [ASC | DESC]] ...);

CREATE INDEX salary_index
 ON employee (salary);

DROP INDEX <name>;

NOTE - Oracle automatically creates an index on the primary key.

COSC344 Lecture 19 26

Questions to Ponder

What are some issues in database security?

Consider the company database - How might we
restrict operations among user groups?

