COSC344
Database Theory and Applications

Lecture 19
Indexing (2)

COSC344 Lecture 19 1

Overview

o Last Lecture

— Database indexing
» Single-Level Ordered Index
* Multi-Level Index

— Source: Chapter 17

 This Lecture
— Dynamic Multi-Level Index
* Trees
* B -trees
 B*-trees
— Source: Chapter 17
 Next Lecture

— Database security and integrity
— Source: Chapter 25

COSC344 Lecture 19

Multilevel Indexes

 First level considered an ordered file
« Second level is a primary index on the first level
— one entry per block in first level
* Repeat the process for other levels
* Dbfr. is the blocking factor for the index
 Used on
— primary
— clustering
— secondary
* Problems with insertions/deletions

COSC344 Lecture 19

Multilevel
Indexes
(cont.)

The levels except the first
level are primary index.

COSC344

Two-level index

First (base)
level

e
-

Second (top)
level

55 .
85 .

2

Primary
key field

Data file

8

2

15

5

24

8

12

15

21

24

29

35

35

2
35 o——|_>

39

36

44

51

39

41

44

46

51

52

55

55

63

58

71

80

63

66

71

78

\

Figure 14.6

85

80

82

85

89

A two-level primary index resembling ISAM {Index Sequential Access Method) organization.

Brief Tree Review

root node
(level 0)

SUBTREE FOR NODE B
-« nodesat

° level 1
nodes at

IO}
nodes at

@ level 3

Fiqure 6.7 A tree data structure that shows an unbalanced tree.

(nodes E,J,C,GH, and K are leaf nodes of the tree)

COSC344 Lecture 19

* Root

* Parent and Child

* Leaf node
 Internal node
 Descendant nodes
» Subtree

s Level

« Balanced

Search Trees

* A search tree of order p is

— Each node contains at most p-1 search values and p pointers
in the order <P, K,, P,, K,, ..., Pq_1, Kq_1, Pq> where q < p.

— Each P, is a pointer to a child or a NULL pointer.
— Each K, is a search value
— All search values are assumed be unique.
— Two constraints
* Within each node, K, <K, ... <K_

- For all values X in the subtree pointed by P, we have K., <
X<Kfor1<i<q,X<K fori=1,and K < Xfori=q

COSC344

Search Trees (cont.)

/P1 K1 K|_1 Pi Ki Kq—1 Pq
/ J
X X X
X<K, Ki-<X<K Kot <X

Figure 6.8 A node in a search tree with subtrees below it.

COSC344 Lecture 19

Search Trees (cont.)

El Tree node pointer
D Null tree pointer
s 5 |8
/ \\
/ - —==
: 7 ‘ 8 ‘) 12

Fiqure 6.9 A scarch tree of order p = 3.

COSC344 Lecture 19

Search Trees(cont.)

* Not guaranteed to be balanced

 Tree balance is sensitive to insertion
order

Goals for balancing a search tree

— Nodes are evenly distributed so that " Well balanced ree:
the depth of the tree is minimized insert order: [4,2,1,3,6, 5,7, 8]

— Make the search speed uniform

. Poorly balanced tree:
Deletion may leave near empty nodes (. iserorer (12,5, 4.5.5,7.8
Another goal

— The index tree does not need too
much restructuring as records are
inserted into or deleted

COSC344 Lecture 19

B-Trees

A B-tree is a search tree with additional constraints:
— The tree is always balanced.

— The space wasted by deletion, if any, never becomes
excessive.

« Each internal node is of the form
<P,, <K{,Pry>, Py, <Ky, Pry>, .., Py <Ky,
P.: a tree pointer to another node in the B-tree

Pro+>, P>

Pr.: a data pointer to the record with search key value of K.

(@)
P , . ,
s K Er’ ,PZ Ky | &Nt f‘ Kil Pri || Koot | Proos ﬁbq.\
v tree l v Y \
tree pointer
pointer data d!ta data data tree
pointer pointer pointer pointer pointer
tree
X pointer X %
X<K1 Ki-—1<x<K| K <X

q-1

COS(JU-r-r =wviul v 1 v 10

B-Trees (cont.)

» At least half full
— Each node has at most p tree pointers, and has at least
[p/2] tree pointers except the root and leaf nodes.

* A node with q tree pointers has g-1 search key field values
and hence g-1 data pointers

 Balanced

— All leaf nodes are at the same level, and their tree pointers
are NULL.

(b)]

Tree node pointer

\ :o Data pointer
L1 [o]] |3]o] L6 o] L7]o] Lo]o] |[r2[] |

COSC344 o T Lecture 19 11

iL= |[

N

B-Trees (cont.)

@)
P, | K | PiE P, K. | Pr_, 4B |.. ik | Dees FF’q.\

» 4 | S 9
tree
Y pointer Y
data data tree

tree
pointer data data i int
pointer pointer pointer pointer pointer
tree
ointer
X P X

X<K, Ki_;<X<K, Kgo1<X

Tree node pointer

(b)

Data pointer

/ \ Null tree pointer

L1 1o]f [[3]o] [6 o] |L7]o L9 [o]] |[2[s]

Figure 6.10 B-tree structures. (a) A node in a B-tree with ¢ — 1 search values.
(b) A B-trec of order p = 3. The values were inserted in the order 8, 5, 1, 7, 35

Insertion and deletion become more complex in order to
maintain these constraints

Lecture 19

[8[o] e

Lo e]

AEs

I

-9

Ly 9

COSC344

12

B-Trees (cont.)

Example: For a B-tree on a nonordering key field with p=23,
assume that each node of the B-tree is 69% full.

1. Each node, on the average, will have p*0.69=23%0.69=16
pointers and 15 key field values

2. The average fan-out fo=16.

3. The number of pointers and values at each level
Root: 1 node 15 key entries 16 pointers
Level 1: 16 nodes 240 key entries 256 pointers
Level 2: 256 nodes 3840 key entries 4096 pointers
Level 3: 4096 nodes 61440 key entries

: B_

I fanout: JEIE
/B
COSC344 13
7 <\ eee 7 <\

B*-Trees

* Most implementations of a dynamic multilevel index use a

variation of B-tree called B*-tree

— Data pointers are stored only at the leaf nodes of the tree.

— The structure of leaf node differs from the structure of the
internal nodes.

— Leaf nodes are usually linked together for ordered access
on the search field

Child Pointe
ln ';,rnal '\"-"'];_,— - ——— =T z [d ar hlld Pl llnt r L.:)'\r'.:ll 0
g B Bl N N - S

\" 2 y {Root)
Search Key Value

/ ”'r

GORD [HEN — [HEOFD [+ED [+ Lavel 2
\ \ 3 s {Leaf)
[l |
Key Value Data Pointer ‘Sibling Pointer
COSC344 Leaf ‘N«;-J»:a 14

b

B*-Trees (continued)

(@)

Py K, Ki_1 P K; q-1 Pq
» * N
tree tree tree
pointer pointer pointer
X X X
X=zK, Ki_1<X=Kj; Kq_1 <X
b pointer to next
) Ky ':"1 Ky 'irz l:ri Kg-1 F".rq_1 ext ®——» leaf node
in tree
Y Y
data data data data
pointer pointer pointer pointer
Figure 6.11 The nodes of a B*-tree. (a) Internal node of a B*-tree with q — 1 search

COSC344

values. (b) Leaf node of a B*-tree with q—1 search values and q—1 data

pointers.

Lecture 19

15

B*-Trees (continued)

e
.

| 1N |__>| | L]

I I I

COSC344 Lecture 19

Internal Node of a B*-Tree

 Assume a B*-tree of order p

— Each internal node is of the form <P, K,, P,, K,, ..., Py,
Kq1: Pg> where g < p.
— Each P, is a tree pointer.
— Within each node, K; <K, . .. < Kg-1
— For all values X in the subtree pointed at by P,
« XK fori="1

« K, <XsKfor1<i<q
« K, <Xfori=q

@
P, K, Kic1 | P Ki Kq-1 Py
» ’ N
tree tree tree\\
pointer pointer pointer
X X X

X<K, K,_,<X=<K, Kq_q <X

Internal Node of a B*-Tree

 Assume a B*-tree of order p

(a)
Py K, Kici | B K; Kq-1 Py
P i * Y
tree tree tr&
pointer pointer pointer
X X X
XKy Ki_1<X=K; Kq_1 <X

— Each internal node has at most p tree pointers.

— Each internal node, except the root and leaf nodes, has at
least [p/Zl tree pointers. The root node has at least two tree
pointers if it is an internal node.

— An internal node with q tree pointers, g <p, has g-1 search
key field values.

COSC344 Lecture 19 18

Leaf Node of a B*-Tree

COSC

Each leaf node is of the form

- <<K,, Pr> <K,, Pr,>, ..., <K
where q<p

Each Pr; is a data pointer.

Pt POINts to the next leaf node of the B*-tree.

Within each node, K, <K, . .. < Kg-1

Each Pr, is a data pointer that points to the record whose
search field value is K, or to a file block containing the record
(or to a block of record pointers that point to records whose
search field value is K. if the search field is not a key).

Each leaf node has at least [p/2] values.
All leaf nodes are at the same level.

(b) K1 PI’1 K2 Pr2 Ki Pl"i Kq_1 Prq 1 Pnext el— » leaf node
L d L g hd in tree

> P >

next

Pr

q-12 FTg1”

data data data data
pointer pointer pointer pointer

Characteristics of B*-Trees

« By starting at the leftmost node, it is possible to
traverse leaf nodes as a linked list.

* More entries can be packed into an internal node of a

B*-tree than for a similar B-tree
— No data pointers in the internal nodes in a B*-tree

« B'-Tree - each node must be 2/3 full

L] :l// i* | |

EpdNENR L Ll
y v

\d y v

v v v A

COSC344 Lecture 19 20

Search with B* Trees

Algorithm: Search for a record with Search Key Field Value K.
n <- block containing root node of B*-tree;

read block n; < block access
while (n is not a leaf node of the B*-tree) do
begin

q<- number of tree pointers in node n;
if K<n.K, (*n.k, refers to the ith search field value in node n *)
then n<- n.P1 (* n.P, refers to the ith tree pointer in node n *)
else if K> n. Kq_1
(N R e S N O N Y RO P

thenn<-n.Pq ii ii ii i
K

else begin
search node n for an entry 1 such that n.K-1<K<n
n<-n.P;
end;
read block n; < block access
end;

Search block n for entry (K,, Pr,) with K=K ; (*search leaf node*)

if found
then read data file block with address Pr, and retrieve record <« 1 block access
else the record with search field value K is not in the data file;
COSC344 Lecture 19 21

Search Example

Block size: B=512 bytes
Block pointer: BP=6 bytes
Record pointer: Pgr=7 bytes
Search Key: S =9 bytes

Num_of records: R = 30,000

E
E

(1) The orders p and p,.;of the B* Tree

p*BP+(p-1)*S<B p< 34
pleaf*(F)R"-S)-i'BPS B pleaf < 31

(2) The number of leaf-level blocks needed if nodes are 69% full.

ceiling(R/(ceiling(p,.,+'0.69))) =1364

COSC344 Lecture 19

Search Example (cont.)

(2) The number of block access needed to search for and retrieve a
record from the file based on the primary key using the B* tree

fo = ceiling(0.69*p) = ceiling(0.69*34) = ceiling(23.46) = 24
Level 0: ceiling(3/fo) = 1
Level 1: ceiling(57/fo) = 3

Level 2: ceiling(1364/fo) = 57
Level 3: 1364

Block access is 4+1=5

COSC344 Lecture 19

23

Disadvantages of Indexes

* Indexes add overhead when inserting, deleting, and
possibly updating.
* In a mass load, add the index after the data is loaded.

COSC344 Lecture 19

24

Indexes in SQL

CREATE INDEX <name>
ON <table> (column [ASC | DESC]
[, column [ASC | DESC]] ...);

CREATE INDEX salary index
ON employee (salary);

DROP INDEX <name>;

NOTE - Oracle automatically creates an index on the primary key.

COSC344

Lecture 19

25

Questions to Ponder

COSC344

What are some issues in database security?

Consider the company database - How might we
restrict operations among user groups?

Lecture 19

26

