
 p 1

COSC344
Database Theory and Applications

Lecture 22
Concurrency
Control

 p 2

Overview

•  Last Lecture
– Transactions

•  This Lecture
– Concurrency control
– Source: Chapter 21

•  Next Lecture
– Database recovery
– Source: Chapter 22

Question to Ponder

•  Effects of allowing concurrent access to a database? a
booking system with many simultaneous users

 p 3

DBMS Component Modules
Where are we now?

Lecture 17

 p 4

Review - Concurrency Control

•  Concurrency: Interleaving of transactions
•  Three Concurrency problems

–  Lost update problem
–  Dirty read problem
–  Incorrect summary problem

• 

 p 5

Review - Serialisability

•  Serialisable: equivalent to some serial schedule

✗✔ ✔

 p 6

Concurrency Control

Develop protocols which ensure serialisability – Locking

 p 7

Locking

•  Basic Idea: acquires a lock on that object
•  Two kinds of locks

–  Write (W) (exclusive)
–  Read (R) (shared)

•  Locking Rules
–  issue a read_lock(x) or a write_lock(x) before

read_item(x).
–  issue a write_lock(x) before write_item(x).
–  issue an unlock(x) after all read_item(x) and

write_item(x) are completed.

Locking protocols are used in most Commercial DBMSs

 p 8

Locking Compatibility Matrix

W R --

W

R

--

N N Y

N Y Y

Y Y Y

Transaction A holds
this kind of lock

Transaction B
requests this
kind of lock W R --

W

R

--

N N Y

N Y Y

Y Y Y

Y

 p 9

Locking Algorithm

•  If transaction A holds a write lock on p, then a request from
other transactions for a lock of either type on p will be
denied.

•  If transaction A holds a read lock on p, then:
–  request from other transactions for a write lock on p will

be denied .
–  request from other transactions for a read lock on p will

be granted .

 p 10

Data Access Protocol with Locking

•  to read p, first acquire a read lock on p.
•  to update p, first acquire a write lock on p.
•  If a lock request by B is denied because it conflicts with a

lock already held by A, B goes into a wait state. B will
wait until A's lock is released .
– The system must guarantee that B does not wait forever

- can use a queue for lock requests

 p 11

Example

Unlocked too early!

Not serialisable!

 p 12

Two-Phase Locking

•  Protocol
– Before operating on any object, must acquire a lock on

that object.
– After releasing a lock, must never go on to acquire any

more locks.
•  Two phases

– Expanding - acquiring locks
– Shrinking - releasing locks

•  Theorem
–  If all transactions obey the two-phase locking

protocol, then all possible interleaved schedules are
serialisable.

 p 13

Two-Phase Locking Example

Expanding
phase

Shrinking
phase

 p 14

Variations of Two-Phase Locking

•  Conservative 2PL
– Locks all items before the transaction begins

•  Strict 2PL (most common)
– Does not release any Write locks until commit or

rollback.

 p 15

Lost Update Problem Revisited

T1 T2

read_lock(X)
read(X)
x := X-N

write_lock(X)
wait
wait
wait

read_lock(X)
read(X)
X := X+M

write_lock(X)
wait
wait A new problem - deadlock!

 p 16

Temporary Update or Uncommitted Dependency Problem Revisited

T1 T2

read_lock(X)
read(X)
X := X-N
write_lock(X)
write(X)

read_lock(Y)
read(Y)
rollback

read_lock(X)
wait
wait
wait
wait
wait
read(X)

Transaction fails
- rollback

 p 17

Incorrect Summary Problem Revisited

 p 18

Incorrect Summary
Problem Revisited

(continued)

T1 T3

read_lock(X)

read(X)

X := X-N

write_lock(X)

write(X)

read_lock(Y)

read(Y)

Y := Y+N

write_lock(Y)

write(Y)

commit (and

 release locks)

sum := 0

read_lock(A)

read(A)

sum := sum+A

 . . .

 . . .

read_lock(X)

wait

wait

wait

wait

wait

wait

wait

wait

wait

read(X)

 p 19

Deadlock

 p 20

Deadlock

•  What is it?
•  Two approaches

– Prevention
– Detection

read_lock(Y)
read_item(Y)

write_lock(X)

read_lock(X)
read_item(X)

write_lock(Y)

T1 T2

time

T1 T2
A wait-for graph

 p 21

Timestamp-Based Deadlock Prevention
•  Transaction timestamp TS(T)

–  ordered based on the start of a
transaction (give priority)

•  TS(T1) < TS(T2) if T1 started first
–  T1 is the older transaction

•  Wait-Die - older transaction waits
on younger
–  If TS(T1) < TS(T2), T1 waits

•  (T1 is older than T2)
–  Otherwise, abort T1 (T1 dies) and

restart it with the same
timestamp

•  (T1 is younger than T2)

Wait-Die kills the
younger transaction!

read_lock(Y)
read_item(Y)

write_lock(X)

read_lock(X)
read_item(X)

write_lock(Y)

T1 T2

time

T1 T2

 p 22

Timestamp-Based Deadlock Prevention
•  Transaction timestamp TS(T)

–  ordered based on the start of a
transaction

•  TS(T1) < TS(T2) if T1 started first
–  T1 is the older transaction

•  Wound-Wait - younger
transaction waits on older
–  If TS(T1) < TS(T2), abort T2 (T1

wounds T2) and restart it later
with the same timestamp

•  (T1 is older than T2)
–  Otherwise, T1 waits

•  (T1 is younger than T2)

Wound-Wait preempts
the younger transaction!

read_lock(Y)
read_item(Y)

write_lock(X)

read_lock(X)
read_item(X)

write_lock(Y)

T1 T2

time

T1 T2

 p 23

Non Time-Based Deadlock Prevention Schemes

•  No waiting
–  If a transaction cannot acquire a lock, it is aborted and

restarted after a time delay without checking whether a
deadlock will actually occur. lots of needless aborts and
restarts

•  Cautious waiting
– Assume T1 tries to acquire a lock on X but X is locked by

T2.
–  If T2 is not blocked, then T1 is blocked and allowed to wait;

otherwise abort T1.
•  Timeouts

–  If a transaction waits longer than a set time, deadlock is
assumed and it is aborted.

 p 24

Deadlock Detection

•  Construct a wait-for graph
– A node for each transaction
– A directed edge (T1 -> T2) whenever T1 is waiting

to lock an item that is locked by T2
– A deadlock is indicated by a cycle .

suits short transactions, little interference between
transactions, accessing a few items

