COSC344
Database Theory and Applications

Lecture 22

Concurrency
Control

p 1

Overview

Last Lecture
— Transactions
This Lecture
— Concurrency control
— Source: Chapter 21
Next Lecture
— Database recovery
— Source: Chapter 22

Question to Ponder

Effects of allowing concurrent access to a database? a
booking system with many simultaneous users

p 2

DBMS Component Modules
Where are we now?

Users: DBA Staff Casual Users Application Parametric Users
/ \ l Programmers
Privileged Interactive (Application
Statements Commands Query Programs
\ A
DDL a Y Host
- uery ; »| Language

Compiler Compiler Precompiler Compiler

I

I

' Y * Y

! Query DML N Compiled

| Optimizer Compiler Transactions

: 4 —

I , z > -

I 7 o

I i (@)= -

! s g o

I 4 -

4 -
: e - DBA Commands,
1 7 -7 Queries, and Transactions
s _ Runtime Stored
System - g - > PDatabase - MData
Catalog/ = == rocclassor Concurrency Control/ anager
Data -7 ESiSisi=i= - Backup/Recovery A
Dictionary Subsystems
Stored Database Input/Output

Query and Transaction
Execution:

Figure 2.3

Component modules of a DBMS and their interactions.

from Database

Lecture 17

Review - Concurrency Control

« Concurrency: Interleaving of _transactions

« Three Concurrency problems
— Lost update problem
— Dirty read problem
— Incorrect summary problem

Client 2 and 3 must wait Changes can be written to
for 1 to finish the file by Client 1

- $e@-&

P

@

p 4

Review - Serialisability

« Serialisable: equivalent to some

(a) T

read_item(X);

X:=X-N;

write_item(X);
read_item(Y');

Time Y= YaN:

write_item(Y');

Time

read_item(X);
X:=X+M,
write_item(X);

Schedule A

T

serial schedule

T

read_item{X);

X:=X-N,;

write_item(X);
read_item(Y');

Y:=Y+N,

write_item(Y');

read_item(X);

X=X+M,

write_item(X);

Schedule C

read_item(X);

X:=X-N,;

write_item(X);

read_item(Y');

Y =Y+N;

write_item(Y');

read_item({X);
X:=X+M,;
write_item(X);

Schedule D

p 5

Concurrency Control

Develop protocols which ensure serialisability — Locking

p 6

Locking

T4

» Basic Idea: acquires a _lock on that object o em(Y)
» Two kinds of locks SN
— Write (W) (exclusive) IMiasbviials
— Read (R) (shared) Wibieririiaals
* Locking Rules
— issue a read_lock(x) or a write lock(x) before
read_item(x).
— issue a write_lock(x) before write item(x).
— issue an unlock(x) after all read item(x) and /\‘\‘
|

write item(x) are completed.

.
.

Locking protocols are used in most Commercial DBMSs

p7

Locking Compatibility Matrix

T4

read_ lock{ Y);
read_item(Y);
unlock(Y);
write__lock(X);
read_ item({X);
X:=X4Y
write_item({X);

Transaction A holds

this kind of lock unlock(X);
W R
Transaction B
W N N

requests this
kind of lock

z
Z
_<

p 8

Locking Algorithm

* If transaction A holds a write lock on p, then a request from
other transactions for a lock of either type on p will be
denied.

« [f transaction A holds a read lock on p, then:

— request from other transactions for a write lock on p will

be denied
— request from other transactions for a read lock on p will

be qranted

T4

read_ lock{Y);
read_item(Y);
unlock(Y');
write__lock(X);
read_item({X);
X:=X4Y
write_item(X);
unlock(X);
p9

Data Access Protocol with Locking

* toread p, firstacquirea __read lock on p.
« to update p, first acquire a __ write lock on p.
 |f alock request by B is denied because it conflicts with a
lock already held by A, B goes into a wait _ state. B will
wait until A's lock is __released
— The system must guarantee that B does not wait forever
- can use a queue for lock requests

T4

T

read_lock({Y);
read_item(Y);
unlock(Y);
write__lock(X);
read_ item({X);
X:=X4Y;

write_item{X);

unlock(X);

read_lock(X);

read_ item{X);

unltock(X);

write_lock(Y);
read_item(Y);

Y =X++Y

write _item(Y);

unlock(Y);

p 10

CY

(©

T4

Example

read_lock(Y);
read_item(Y");
unlock(Y);
write__lock(X);
read_item(X);
X:=X4Y
write_item(.X);
unlock(X);

Time

Fiqure 20.3

TS (B) nitial values: X=20, Y=30
Result of serial schedule T4 followed by T, :
read_lock(X); X=50, Y=80
read_item({X); Result of serial schedule T, followed by T, :
unlock(X); X=70, Y=50

write__lock(Y);
read_item(Y);

Y'=X+Y,
write_item(Y);
unlock(Y);
Unlocked too early!
Ty TS
road_tock(Y): Not serialisable!

read_lock(X);
pad=item(X);
; Result of schedule S:

() X=50, Y=50
—item(Y); (nonserializable)
Y =X+Y.
write__item(Y);
unlock(Y);

write_ lock({X);
read_item({X);
X=X4Y:
write__item({X);
untock(X);

Transactions that do not obey two-phase locking. (a) Two trans-
actions T; and T5. (b) Results of possible serial schedules of T and
T,. (¢) A nonserializable schedule S that uses locks.

p 1

Two-Phase Locking

* Protocol
— Before operating on any object, must acquire a lock on
that object.
— After releasing a lock, must never go on to acquire any
more locks.
 Two phases
— Expanding - acquiring locks
— Shrinking - releasing locks
 Theorem
— If all transactions obey the two-phase locking

protocol, then all possible interleaved schedules are
serialisable

lock point

growing phase . o shrinking phase

Expanding
phase

Shrinking
phase

Two-Phase Locking Example

T,

T,

read_lock (Y);
read_item (Y);
write_lock (X);
uniock (Y);
read_item (X);
X=X+Y'
write_item (X);
unlock (X);

read_lock (X);
read_item (X);
write_lock (Y);
unlock (X);
read_item (Y);
Y=X+Y:
write_item (Y);
unlock (Y);

that they can produce a deadlock.

Figure 20.k Transactions T," and T,', which arc the same as T, and T, of Fig-
ure 20.3 but which follow the two-phase locking protocol. Note

p 13

Variations of Two-Phase Locking

« Conservative 2PL
— Locks all items before the transaction begins

o Strict 2PL (most common)

— Does not release any Write locks until commit or
rollback.

locks 1

p 14

Lost Update Problem Revisited

\
read_item(X);
X:=X+MAT;
Time write__iterm(X);
read_item(Y);
. i Iterm X has an incorrect value because
- ——————————— . . .
v write_iterm(X); its update by 7T, is "lost" (overwritten)
Y:=Y+N;
write__item({ Y");
T1 T2

read lock(X)

read(X)
x = X-IN
read lock(X)
read(X)
X = X+M
> write lock(X)
wait write lock(X)
Wali wait
wai .
wait A new problem - deadlock!

p 15

Temporary Update or Uncommitted Dependency Problem Revisited

74 T2

read__item(X);
X:=X-/N;
write__item(X);

Time \

\ read__item(X);
X =X+NMAT;
write__iterm(X);

read_itemd{ Y');

Transaction 7, fails and must change the value

of X back to it id value; meanwhiie 7_ H H
has read the "temporary:' incorrect vaIL?e of X. TransaCtlon faIIS
T1 T rollback

read_lock(X)

read(X)

X = X-N

write lock(X)

write(X)
read lock(X)
wait

read lock(Y) \V;zi:

read(Y) wait

rollback wait
read(X)

p 16

Incorrect Summary Problem Revisited

7 T3

sum:=0;
read_item(A);
SUM.=SUum+A;

read_item(X);
X:=X-N;

write_item(X); \
~

read_item(X);

T yreads Xafter Nis subtracted and reads
sum:=sum+.X;

, _ Y before Nis added; a wrong summary
» read item(Y) is the result (off by N).

/ sum:=sum+Y;

read_item(Y);
Y:=Y+N,;
write_item(Y);

p 17

T1 T3

Incorrect Summary
Problem Revisited sum := 0
(Continued) read lock(A)

read(A)
sum := sum+A
T T3
. read lock(X)
sum:=0;
read_item(A); read(X)
SUM:=SUM+A,; X = X-N

write lock(X)

. write(X) \
read_item(X); read lock(X)

XI:X—N; .
write_item(X); W&%t
wait
read_item(X); read_lo Ck(Y) wait

sum:=sum+.X; .
read_item(Y); rYeai(¥3_N W&?t
sum:=sum+Y; - wait
write lock(Y) wait
read_item(Y); write(Y) wait
V\;;;eYTt/;/rinm' commit (and wait
- ! release locks) wait

read(X)

p 18

Deadlock

Why have
these cars
been abandoned?

p 19

Deadlock

« Whatis it?
 Two approaches
— Prevention
— Detection
T1 T2

read__lock(Y)
read__item(Y) time
read__lock(X)

read__item(X)
write__lock(X)

write__lock(Y)

@ @ A wait-for graph
-—

p 20

Timestamp-Based Deadlock Prevention

Transaction timestamp TS(T)

— ordered based on the start of a

transaction (give priority)
TS(T,) < TS(T,) if T1 started first
— T1 is the older transaction

Wait-Die

on younger

— If TS(T,) < TS(T,), T, waits
» (T, is older than T,)

- older transaction waits

— Otherwise, abort T, (T, dies) and

restart it with the same
timestamp
(T, is younger than T,)

Wait-Die kills the -ié—
younger transaction! ‘
2

Wants
resource

Holds
resource

Old
pProcess
10

Young
process
20

Waits
Wants Holds
resource resource

Young
process
20

Old
Process
10

Timestamp-Based Deadlock Prevention

* Transaction timestamp TS(T)
— ordered based on the start of a Wants Holds
transaction resource resource
« TS(T,) < TS(T,) if T1 started first
— T1 is the older transaction

Old
process
10

Young
process

 Wound-Wait - younger 2l

transaction waits on older

— If TS(T,) < TS(T,), abort T, (T, Geeoety
wounds T,) and restart it later Wants Hoids
with the same timestamp resource resource

» (T, is older than T,)
— Otherwise, T, waits
(T, is younger than T,)

Young
process
20

Old
process
10

Wound-Wait preempts
the younger transaction!

Non Time-Based Deadlock Prevention Schemes : g

* No waliting :
— If a transaction cannot acquire a lock, it is aborted and
restarted after a time delay without checking whether a
deadlock will actually occur. lots of needless aborts and
restarts
» Cautious waiting
— Assume T, tries to acquire a lock on X but X is locked by
T,.
—If T, is not blocked, then T, is blocked and allowed to wait;
otherwise abort T,.
* Timeouts
— If a transaction waits longer than a set time, deadlock is
assumed and it is aborted.

p 23

Deadlock Detection

» Construct a wait-for graph
— A node for each___transaction
— A directed edge (T1 -> T2) whenever _T1 is waiting
to lock an item that is locked by T2
— A deadlock is indicated by a ___cycle

A/@ Why bhave
these cars
been abandoned?

4

| R

suits short transactions, little interference between
transactions, accessing a few items

p 24

