
COSC344 Lecture 11 1

COSC344
Database Theory and Applications

Lecture 11 Triggers

COSC344 Lecture 11 2

Learning Objectives of This Lecture

• You should

– understand the difference between a trigger and a PL/SQL

program

– understand what triggers can be used for

– understand how a trigger works

– distinguish between row-level and statement-level triggers

– be able to use triggers to maintain the values for derived

attributes

– understand mutating table and constraining table

• Source

– Lecture note,

– Oracle documentation

COSC344 Lecture 11 3

What Is a Trigger

• Triggers are commonly used to

• Enforcement of complex business rules

• e.g. whenever a sales transaction is greater than $50,000, the

salesperson must be personally congratulated.

• Enforcement of some types of referential integrity

• e.g. Oracle does not support ON UPDATE CASCADE

• Auditing purpose (creating audit log)

• Who did what to my table? when?

• Automatic generation the values for derived attributes

• Creation of replica tables and backup files

A trigger is a PL/SQL stored subprogram associated with a

table, and is automatically invoked by the DBMS in response

to specified changes to the database.

COSC344 Lecture 11 4

How does a trigger work
• Follows the Event-Condition-Action model

• triggering event: the statement that causes the trigger to
execute

• Triggering statement: INSERT, UPDATE, or DELETE
• Triggering timing: when the trigger is fired

• BEFORE - Fire before the triggering SQL statement is executed
• AFTER - Fire after the triggering SQL statement is executed

• triggering condition: determines whether the action should be
executed

• Condition is optional

• action: a block of PL/SQL statements to be executed

COSC344 Lecture 11 5

How to define a Trigger
CREATE [OR REPLACE] TRIGGER name
{BEFORE | AFTER | INSTEAD OF}
{DELETE
| INSERT
| UPDATE [OF column [,column] ...]}
[OR
{DELETE
| INSERT
| UPDATE [OF column [,column]

...]}] ...
ON {TABLE | VIEW} tablename
[[REFERENCING {OLD [AS] old

|NEW [AS] new} ...]
FOR EACH {ROW | STATEMENT}
[WHEN (condition)]]
PL/SQL block

Trigger Syntax

COSC344 Lecture 11 6

Types of Triggers
• Row-level triggers

– Execute once for each row affected by the triggering event

• Statement-level triggers
– Execute only once even multiple rows are affected by the

triggering event.

COSC344 Lecture 11 7

Correlation Values - NEW and OLD
• OLD.<attribute name>

– The value of the attribute before a change from an UPDATE
statement or before a DELETE statement. This value is
NULL for INSERT statements.

• NEW.<attribute name>
– The value of the attribute after an UPDATE statement or after

an INSERT statement. This value is NULL for DELETE
statements.

• Can be aliased
– NEW AS newname
– OLD AS oldname

• In the trigger body, NEW and OLD must be preceded by a
colon (":"), but in the WHEN clause, they do not have a
preceding colon!

COSC344 Lecture 11 8

How to define a Trigger
CREATE [OR REPLACE] TRIGGER name
{BEFORE | AFTER | INSTEAD OF}
{DELETE
| INSERT
| UPDATE [OF column [,column] ...]}
[OR
{DELETE
| INSERT
| UPDATE [OF column [,column]

...]}] ...
ON {TABLE | VIEW} tablename
[[REFERENCING {OLD [AS] old

|NEW [AS] new} ...]
FOR EACH {ROW | STATEMENT}
[WHEN (condition)]]
PL/SQL block

Trigger Syntax

COSC344 Lecture 11 9

Row-level Trigger Example

CREATE OR REPLACE TRIGGER after_delete_customer
AFTER DELETE ON customers
FOR EACH ROW
BEGIN

INSERT INTO cust_history(cno, cname, address)
VALUES (:old.cnum,:old.cname,:old.city);

END;
/

Deleted customer records must be moved to a customer history table.

COSC344 Lecture 11 10

Statement-level Trigger Example

CREATE OR REPLACE TRIGGER modify_customer
BEFORE DELETE OR UPDATE OR INSERT ON customers
BEGIN
If to_char(sysdate,’hh24’)<’08’ OR

to_char(sysdate, ’hh24’)>’18’ THEN
RAISE_APPLICATION_ERROR (-20001, ’Data can not be

modified at this time’);
END IF;

END;
/

Customer tables can only be modified between 8am to 6pm.

COSC344 Lecture 11 11

Derived Value Trigger Example

CREATE OR REPLACE TRIGGER modify_salary
AFTER UPDATE OF salary ON employee
FOR EACH ROW
BEGIN
UPDATE department
SET total_salary = total_salary + :NEW.salary

- :OLD.salary
WHERE dnumber = :OLD.dno;

END;
/

The department relation has a derived attribute total_salary to
store the total salary paid to the employees in each department.

What is wrong with this
trigger definition?

COSC344 Lecture 11 12

Trigger Attributes
• Three Boolean trigger attributes that allow us to determine

what DML activity has caused the trigger to execute
– INSERTING

– True if the trigger is fired due to an INSERT operation
– UPDATING

– True if the trigger is fired due to an UPDATE operation
– DELETING

– True if the trigger is fired due to an DELETE operation

• Trigger attributes can be used in both row and statement
triggers

COSC344 Lecture 11 13

Derived Value Trigger Example (revisit)

CREATE OR REPLACE TRIGGER modify_salary
AFTER INSERT OR UPDATE OR DELETE OF salary ON employee
FOR EACH ROW
BEGIN

IF INSERTING THEN
UPDATE department
SET total_salary = total_salary + :NEW.salary
WHERE dnumber = :NEW.dno;

ELSIF UPDATING THEN
UPDATE department
SET total_salary = total_salary + :NEW.salary - :OLD.salary
WHERE dnumber = :OLD.dno;

ELSE -- deleting
UPDATE department
SET total_salary = total_salary - :OLD.salary
WHERE dnumber = :OLD.dno;

END IF;
END;
/

The department relation has a derived attribute total_salary to
store the total salary paid to the employees in each department.

COSC344 Lecture 11 14

Triggers Can Call Procedures
CREATE OR REPLACE PROCEDURE sumit
AS

sal_sum employee.salary%TYPE;
BEGIN

SELECT SUM(salary)
INTO sal_sum
FROM employee;
UPDATE department
SET total_salary = sal_sum;

END;
/

CREATE OR REPLACE TRIGGER modify_salary
AFTER UPDATE OF salary ON employee
BEGIN
sumit();

END;
/

COSC344 Lecture 11 15

Exceptions

CREATE OR REPLACE TRIGGER modify_salary
BEFORE UPDATE OF salary ON employee
FOR EACH ROW
DECLARE
too_much EXCEPTION;

BEGIN
IF :NEW.salary>99000 THEN
RAISE too_much;

END IF;
EXCEPTION
WHEN too_much THEN
RAISE_APPLICATION_ERROR (-20001,
'Cannot pay that much');

END;
/

COSC344 Lecture 11 16

Oracle’s Execution Model

• Execute all BEFORE statement triggers that apply to
the SQL statement.

• Loop for each row affected by the SQL statement
– Execute all BEFORE row triggers that apply.
– Change the row. Perform integrity constraint checking.
– Execute all AFTER row triggers that apply.

• Complete integrity constraint checking.
• Execute all AFTER statement triggers that apply to

the SQL statement.

COSC344 Lecture 11 17

Referential Integrity Example
• Oracle does not support

– ON UPDATE CASCADE
– ON UPDATE SET NULL
– ON UPDATE SET DEFAULT

FOREIGN KEY (dno) REFERENCES department(dnumber))
ON DELETE CASCADE ON UPDATE CASCADE,

CREATE OR REPLACE TRIGGER update_dno
AFTER UPDATE OF dnumber ON department
FOR EACH ROW
BEGIN

UPDATE employee
SET dno = :new.dnumber
WHERE dno =:old.dnumber;

END;
/

Will this work?

COSC344 Lecture 11 18

Mutating/Constraining Table Error (1)
• A mutating table is a table that is

– currently being modified by an UPDATE, DELETE, or INSERT
statement,

– or a table that might need to be updated by the effects of a
declarative DELETE CASCADE referential integrity constraint.

• Mutating error occurs when
- the SQL statements of a trigger read from (query) or modify a
mutating table of the triggering statement.

COSC344 Lecture 11 19

Mutating/Constraining Error (2)

CREATE OR REPLACE TRIGGER get_salary
AFTER UPDATE ON employee
FOR EACH ROW
DECLARE

total_salary NUMBER;
BEGIN

SELECT sum(salary) INTO total_salary FROM employee
WHERE dno = :old.dno;
DBMS_OUTPUT.PUT_LINE(total_salary);

END;
/

COSC344 Lecture 11 20

Mutating/Constraining Table Error (4)
• An mutating table is a table that is

– currently being modified by an UPDATE, DELETE, or INSERT
statement,

– or a table that might need to be updated by the effects of a
declarative DELETE CASCADE referential integrity constraint.

• A constraining table is a table that a triggering statement
might need to read

– either directly, for a SQL statement,

– or indirectly, for a declarative referential integrity constraint.

• Restriction on constraining table
- The statements of a trigger cannot change the PRIMARY,
FOREIGN, or UNIQUE KEY columns of a constraining table of
the triggering

COSC344 Lecture 11 21

Mutating/Constraining Error (5)

create table P (p1 number PRIMARY KEY);
create table F (f1 number references P (p1) on
delete cascade);

update p set p1 = p1+1;
SQL> select * from p;

2
3
4

SQL> select * from f;
4
4
4

create trigger pf
after update on P for each row
begin
if (:new.p1 != :old.p1) then

update f
set f1 = :new.p1

where f1 = :old.p1;
end if;

end; /
insert into p values (1);
insert into p values (2);
insert into p values (3);
insert into f values (1);
insert into f values (2);
insert into f values (3);

COSC344 Lecture 11 22

Other Points

§ Do not create recursive triggers
§ SHOW ERRORS;
§ SHOW ERRORS TRIGGER name;
§ DROP TRIGGER name;
§ ALTER TRIGGER name ENABLE;
§ ALTER TRIGGER name DISABLE;
§ ALTER TABLE name ENABLE ALL TRIGGERS;
§ ALTER TABLE name DISABLE ALL TRIGGERS;

