
COSC344 Lecture 12 1

COSC344
Database Theory and Applications

Lecture 12:
Java and SQL

COSC344 Lecture 12 2

Learning Objectives of This Lecture

• You should
– understand the four drivers in JDBC
– understand the basic steps in developing a java program to

access databases.
– get familiar with the classes and functions in JDBC library
– be able to access and process data in database from a java

program

• Source
– Textbook: Chapter 10
– JDBC documentation
– Program examples

COSC344 Lecture 12 3

Database Design Process

Requirements
Collection and Analysis

Conceptual Design

Logical Design
(Data Model Mapping)

Physical Design

Functional Analysis

Application Program
Design

Transaction
Implementation

Conceptual Schema
(in a high-level data model)

Logical (Conceptual) Schema
(in a high-level data model)

data requirements

Functional Requirements

High-level Transaction
Specification

Internal Schema

Application Programs

DBMS-specific
DBMS-independent

miniworld

COSC344 Lecture 12 4

Database Programming Approaches
• Using a library of database functions

– A library of APIs for accessing databases from programs
– SQL commands are included as parameters in function calls
– Java DataBase Connectivity (JDBC) --- this lecture

• Embedding database commands in a general-purpose
programming language
– Embed SQL statements in the host programming language
– A special prefix (EXEC SQL) for identification
– A precompiler to extract the SQL for processing in DBMS
– Pro*C/C++ Precompiler --- next lecture

• Designing a brand-new language
– Applications with intensive database interactions

COSC344 Lecture 12 5

What is JDBC?
• JDBC: Java DataBase Connectivity

– A standard for connecting from Java to relational databases
– A library of Java APIs for tool/database developers
– Implemented through the standard java.sql interfaces
– Allows individual providers to implement and extend the

standard with their own JDBC drivers.
• Goals:

– 100% Pure Java
– SQL-Level
– Simple and high performance

COSC344 Lecture 12 6

JDBC Architecture

• Java application calls JDBC library.
• JDBC loads a driver.
• Driver communicates with a particular database.
• An application can work with several databases by using

different drivers.

Java Application JDBC Library Driver

COSC344 Lecture 12 7

JDBC Drivers

• JDBC Thin Driver
– Pure Java driver on the client-side
– Requires no Oracle software on client-side
– Implements SQL*Net on top of Java sockets
– Supports the TCP/IP protocol
– Applets and applications

• JDBC OCI Driver
– OCI - Oracle Call Interface
– Requires Oracle client installation
– Written in a combination of Java and C
– Needs OCI libraries, C-entry points, Oracle Net, …

COSC344 Lecture 12 8

JDBC Drivers (cont.)

JDBC Thin Driver
Java Sockets

JDBC OCI Driver
OCI Library

SQL Engine
PL/SQL Engine

Java Engine
Sever-Side Thin Driver

JDBC Server-Side
Internal Driver

KPRB C Library

Oracle Database

Oracle Database

COSC344 Lecture 12 9

JDBC Drivers (cont.)

• JDBC Server-Side Thin Driver
– Offers the same functionality as Thin driver on client-side
– Runs inside Oracle Database

– Accesses a remote database from an Oracle Database
– Accesses another session from a Java stored procedure

• JDBC Sever-Side Internal Driver
– Supports any Java code that runs inside Oracle Database

– Java Virtual Machine(JVM) communicates with SQL Engine

– Fully consistent with the client-side driver
– Only support Java 1.5

COSC344 Lecture 12 10

How to Use JDBC?

• Basic Steps
– Connect to the database

- Register the driver and set up a connection

– Create a statement
– Execute SQL
– Process the result set
– Close result set and statement objects
– Close the connection

• Interfaces and APIs
– java.sql package
– Classes and Methods

- http://docs.oracle.com/javase/7/docs/api/java/sql/package-summary.html

COSC344 Lecture 12 11

Connect to Database

• Importing Packages

Basic Steps in JDBC

2-8 Oracle Database JDBC Developer's Guide and Reference

Importing Packages
Regardless of which Oracle JDBC driver you use, include the import statements
shown in Table 2–1 at the beginning of your program.

The Oracle packages listed as optional provide access to the extended functionality
provided by Oracle JDBC drivers, but are not required for the example presented in
this section.

Opening a Connection to a Database
First, you must create an OracleDataSource instance. Then, open a connection to
the database using the OracleDataSource.getConnection method. The
properties of the retrieved connection are derived from the OracleDataSource
instance. If you set the URL connection property, then all other properties, including
TNSEntryName, DatabaseName, ServiceName, ServerName, PortNumber,
Network Protocol, and driver type are ignored.

Specifying a Database URL, User Name, and Password
The following code sets the URL, user name, and password for a data source:

OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setUser(user);
ods.setPassword(password);

The following example connects user scott with password tiger to a database with
service orcl through port 1521 of the host myhost, using the JDBC Thin driver:

OracleDataSource ods = new OracleDataSource();
String url = "jdbc:oracle:thin:@//myhost:1521/orcl",

Note: You must supply Oracle driver-specific information for the
first three tasks, which allow your program to use the JDBC
application programming interface (API) to access a database. For the
other tasks, you can use standard JDBC Java code, as you would for
any Java application.

Table 2–1 Import Statements for JDBC Driver

Import statement Provides

import java.sql.*; Standard JDBC packages.

import java.math.*; The BigDecimal and BigInteger classes. You can
omit this package if you are not going to use these
classes in your application.

import oracle.jdbc.*;

import oracle.jdbc.pool.*;

import oracle.sql.*;

Oracle extensions to JDBC. This is optional.

OracleDataSource.

Oracle type extensions. This is optional.

Note: It is better to import only the classes your application needs,
rather than using the wildcard asterisk (*). This guide uses the
asterisk (*) for simplicity, but this is not the recommended way of
importing classes and interfaces.

COSC344 Lecture 12 12

Connect to Database (cont.)

• DriverManager Class
– Manage a set of JDBC drivers
– Methods

(1) static void registerDriver (Driver driver)
//Registers the given driver with the DriverManager

(2) static void deregisterDriver(Driver driver)
//Drops a driver from the DriverManager's list

(3) static Connection getConnection(String url)
//Attempts to establish a connection to the given database URL

(4) static Connection getConnection(String url, String user,

String password)
//Attempts to connect to the given database URL with user name
and password

COSC344 Lecture 12 13

jdbc: <subprotocol> :<subname>

Protocol Database identifierSubprotocol

JDBC URLs

• JDBC uses a URL to identify the database connection.

jdbc: oracle: <driver>: @<database>

Our Lab jdbc: oracle: thin: @ silver:1521:cosc344

COSC344 Lecture 12 14

Connect to Database (example)

// Read pass.dat
UserPass login = new UserPass();
String user = login.getUserName();
String pass = login.getPassWord();
String host = "silver";

// Register the driver and connect to Oracle
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
String url = "jdbc:oracle:thin:@" + host + ":1521:cosc344";
Connection con = null;
con = DriverManager.getConnection(url, user, pass);

COSC344 Lecture 12 15

Create Statement
• Statement Interface

– Send the SQL statement to the database
– Return the results produced
– Need an active connection to create a statement

§ Methods supporting Statement (Connection Interface)
– Statement createStatement()

- a simple SQL statement with no parameters

– PreparedStatement prepareStatement()
- a SQL statement that is executed frequently with or without parameters

– CallableStatement prepareCall()
- a CallableStatement object for calling database stored procedures

COSC344 Lecture 12 16

Execute SQL

• Three methods to execute an SQL statement
– ResultSet executeQuery()

- Executes the SQL query and returns the data in a table
(ResultSet)

– int executeUpdate()
- Execute INSERT, UPDATE, or DELETE Statements
- The return is the number of rows affected in the database
- Support Data Definition Language (DDL) statements

CREATE TABLE, DROP TABLE, and ALTER TABLE

ResultSet results = stmt.executeQuery(“SELECT * FROM employee”);

int rows = stmt.executeUpdate (“DELETE FROM employees”+
“WHERE dno = 4”);

COSC344 Lecture 12 17

Execute SQL (cont.)

– boolean execute()
- Generic method for executing stored procedures and

prepared statements

- May or may not return a ResultSet (statement.getResultSet)

- Two or more result sets may be produced

- Rarely used, exception for multiple return result sets

COSC344 Lecture 12 18

Execute SQL (example)

• Using Statement
Statement stmt = con.createStatement();
ResultSet reset = stmt.executeQuery(“SELECT * FROM employee”);

int rows = statement.executeUpdate (“DELETE FROM employee”+
“WHERE dno = 4”)

• Using PreparedStatement
PreparedStatement pstmt = con.prepareStatement(“INSERT INTO”+

“employee(ird, lname) values (?,?)”);

//Add Bob as employee number 1500
pstmt.setInt (1,150000000); //The first ? Is for ird
pstmt.setString(2,”Bob”); //The second ? Is for lname
pstmt.executeUpdate();

COSC344 Lecture 12 19

Process the Result
• ResultSet Interface

– A table representing a result set generated by a query
– A ResultSet maintains a cursor pointing its current row of data
– Provides a set of methods to manipulate the data in ResultSet
– Uses a while loop and next() to iterate through the ResultSet

while (rset.next()) {
….

}

§ Cursor Management Methods
– boolean first()
– boolean next()
– boolean previous()
– boolean last()
– boolean isFirst()
– boolean isLast()

COSC344 Lecture 12 20

Process the Result (cont.)
§ Data Retrieval Methods

– byte getByte(int columnIndex)
– double getDouble(int columnIndex)
– int getInt(int columnIndex)
– Date getDate(int columnIndex)
– ……

§ Data Update Methods
– void updateInt(int columnIndex, int x)
– void updateNull(int columnIndex)
– void insertRow()
– ……

§ More Methods
– refer to ResultSet Interface in java.sql package

COSC344 Lecture 12 21

Process the Result (cont.)
§ ResultSetMetaData Interface

• Used to get information about the types and properties of the
columns in a ResultSet object

• Methods
(1) int getColumnCount();
(2) String getColumnLabel(int column)
(3) String getColumnName(int column)
(4) int getColumnType(int column)
(5) boolean isNullable(int column)
(6) boolean isReadOnly(int column)

ResultSet reset = stmt.executeQuery(“SELECT * FROM employee”);
ResultSetMetaData rsmd = reset.getMetaData();

COSC344 Lecture 12 22

JDBC Data Types

JDBC Type Java Type JDBC Type Java Type
BIT boolean NUMERIC

DECIMAL
BigDecimal

TINYINT byte DATE Java.sql.Date

SMALLINT short TIME
TIMESTAMP

Java.sql.Timestamp

INTEGER int

BIGINT long CLOB Clob

REAL float BLOB Blob

FLOAT
DOUBLE

double ARRAY Array

DISTINCT Mapping of underlying type

BINARY
VARBINARY
LONGVARBINARY

byte[] STRUCT Struct

REF Ref

CHAR
VARCHAR
LONGVARCHAR

String JAVA_OBJEC
T

Underlying java class

COSC344 Lecture 12 23

Close the Connection

• Close the ResultSet object

• Close the Statement object

• Close the connection

reset.close();

stmt.close();

con.close();

COSC344 Lecture 12 24

JDBC Exceptions
• SQLException: provides information on a database access

error or other errors
try {

// Java-SQL statement

}
catch (SQLException e){

quit(e.message());
}

private void quit (String message){
System.err.println(message);
System.exit(1);

}

COSC344 Lecture 12 25

JDBC Exceptions (cont.)
• try…catch…finally statement

try {

//Register the driver and connect to Oracle
//Execute SQL
//Process the result

}

catch (SQLException e){

//Process exception
}

finally {

//close connection
}

COSC344 Lecture 12 26

Examples
• A query example

• An update example

• An example showing the use of wasNull()

Source code
– /coursework/344/pickup/oracle-java

Retrieves from the EMPLOYEE table the first and last names and department
number of all employees whose first name begins with a specified letter.

Updates the salary field for a specified employee. Ask for the IRD of an
employee and a new salary. Updates the salary and commits.

The use of various data types and the use of wasNull()

COSC344 Lecture 12 27

Useful References

• Oracle's JDBC documentation on the course web page

under Resources

• JDBC Package java.sql

Oracle 12 documentation -> JDBC Java API Reference

• Reese, G; Database Programming with JDBC and JAVA,

O'Reilly, 2nd edition

• Example programs are in /coursework/344/pickup/oracle-

java

COSC344 Lecture 12 28

Assignment 2

• 15% of the final mark

• Due at 4pm on May 17 (Tuesday)

• Tasks

– Revise the ERD according to the feedback

– Convert the ERD to relational schema

– Normalize all relations to BCNF

– Implement in Oracle and populate data

