
COSC344 Lecture 13 1

COSC344
Database Theory and Applications

Lecture 13:
C and SQL

COSC344 Lecture 13 2

Overview

• Last Lecture
– Java SQL

• This Lecture
– C & SQL
– Source: Lecture notes,

Textbook: Chapter 10
Program examples

• Next Lecture
– PHP & SQL

COSC344 Lecture 13 3

Embedded SQL
• Embed database statement in a host language (e.g. C/C++)
• Identified by a special prefix (EXEC SQL)
• Terminated by a semicolon (;)

• A precompiler or preprocessor identifies the database
statements and extract them for processing in DBMS

• Pro* C/C++ precompiler
– C/C++ and SQL programming to manipulate data in Oracle

EXEC SQL
SELECT fname, lname, dno
FROM employee;

COSC344 Lecture 13 4

Embedded SQL Program Development

• Editor
– Host language program with

embedded SQL statements
– <file name>.pc

• Precompiler
– Replaces SQL statements with

Oracle provided library calls
– <file name>.c

• Compiler
– Generates an object file
– <filename>.o

• Linker
– Resolves references to Oracle

runtime libraries, system libraries
– Executable program

Editor

Source Program

Pro*C/C++
Precompiler

Modified
Source Program

Compiler

Object Program

linker

Executable Program

Oracle
Runtime
Library
(SQLLIB)

calls

COSC344 Lecture 13 5

Embedded SQL Statements
• Executable Statements

– Result in calls to the runtime library SQLLIB
– Can be placed wherever executable host language

statements can be placed
– Connect to Oracle, control access to Oracle data, process

transactions, etc.
– Examples - SELECT, INSERT, COMMIT, DELETE

• Declaratives
– Do not result in calls to SQLLIB, not operate on Oracle Data
– Can be placed wherever host language variable

declarations can be placed
– Declare objects, communication areas, and SQL variables
– Example – DECLARE, INCLUDE , VAR, WHENEVER

COSC344 Lecture 13 6

Host Variables

• Declared in host program and shared with Oracle
• Used to communicate between host program and database
• Can be used anywhere an SQL expression can be used
• Must be prefixed with a colon (:)
• Can have the same name as database columns
• Must have data types compatible with the data types in the

database
• Can use a struct to contain a number of host variables

– Oracle uses each component of the struct as a host variable

COSC344 Lecture 13 7

Declaring Host Variables
• Declared within an embedded SQL DECLARE section

• NOTE - Oracle's embedded SQL does not require the
DECLARE section. It only requires declaring host
variables as in normal C. BUT the DECLARE section is
part of the SQL standard. Some precompilers will issue
errors if not included.

EXEC SQL BEGIN DECLARE SECTION;

varchar h_fname[16];
varchar h_lname[16];
int dno;
char h_ird[10];

EXEC SQL END DECLARE SECTION;

COSC344 Lecture 13 8

INTO Clause
• Specifies the host language target variables
• Retrieved values are placed into the specified host

variables
• 1:1 correspondence between host variables and attributes

in the SELECT clause
– The ith retrieved value in the SELECT clause is placed in the

ith host variable in the INTO clause

• Can be used only when the query result is a single record

EXEC SQL
SELECT fname, lname, dno
INTO :h_fname, :h_lname, :h_dno
FROM employee
WHERE ird = :h_ird;

COSC344 Lecture 13 9

VARCHAR Data Type
• A special type provided by ORACLE as a predeclared struct
• The precompiler changes this declaration

into the following struct

• Two components

• Do not forget to allow for '\0’

VARCHAR username[20];

struct {
unsigned short len;
unsigned char arr[20];

} username;

username.len
username.arr

COSC344 Lecture 13 10

Why VARCHARS?

• You can explicitly reference the length of a returned
string after a SELECT or FETCH

• ORACLE does not explicitly terminate strings with the
null terminator

• ORACLE puts the length of the character string into
the length member.

• You can then use this length to add the null terminator

• Or you can use the length in a strncpy or printf
statement

username.arr[username.len] = '\0';

printf("Username is %.*s\n", username.len,
username.arr);

COSC344 Lecture 13 11

Delimiters
§ C

– Use single quotes to delimit single characters

– Use double quotes to delimit character strings

§ SQL
– Use single quotes to delimit character strings

– Use double quotes to delimit identifiers containing special or
case-sensitive characters

ch=getchar();
Switch (ch)
{ case ‘U’: update(); break;

… }

printf(“Good Morning”);

EXEC SQL SELECT salary WHERE fname=‘John’;

EXEC SQL CREATE TABLE “Emp2” (…)

COSC344 Lecture 13 12

Database Connection
• Standard CONNECT

–
username and password are char or VARCHAR host variables

–
usr_pwd contains username and password separated by a slash

character (/).

§ Change Password on CONNECT
–

– Change the account password to newpswd

– Connect to database using user/newpswd

EXEC SQL CONNECT :username IDENTIFIED BY :password;

EXEC SQL CONNECT :usr_pwd;

EXEC SQL CONNECT .. ALTER AUTHORIZATION :newpswd;

COSC344 Lecture 13 13

Close Connection

• Exit gracefully if the last SQL statement it executes is
either

or

EXEC SQL COMMIT WORK RELEASE;

EXEC SQL ROLLBACK WORK RELEASE;

COSC344 Lecture 13 14

Example 1 - getemp

• Small sample program that demonstrates
– DECLARE section
– Connecting to the database
– A very basic query
– Disconnecting from the database in a tidy way

• Task
Asks for a IRD, and retrieves the first and last name and
department number from the EMPLOYEE table.

• Source code: /coursework/344/pickup/oracle-C/getemp.pc

COSC344 Lecture 13 15

Errors and Recovery

• Status Variables: SQLCODE and SQLSTATE
– DBMS returns a value in SQLCODE after each database

command is executed.
– Should be tested after every SQL statement and take

appropriate action if the value is not what was expected

• The SQL Communications Area (SQLCA)
– Contains components that are filled in at runtime after SQL

statement is processed by Oracle

COSC344 Lecture 13 16

SQLCODE
• A long integer variable declared either inside or outside of

the Declare section
• In Oracle, it is a field in SQLCA – sqlca.sqlcode

=0 statement executed without error or exception

>0 statement executed but detected an exception.
Examples are: WHERE clause condition not met
or no rows returned

<0 statement NOT executed because of an application,
database, system, or network error

There is a complete list in Oracle8i Error Messages

COSC344 Lecture 13 17

SQLSTATE
• A 5-characters null-terminated string
• Must be declared inside the Declare section

• Stores both error and warning codes
• The reporting mechanism uses a standardized coding

scheme.

char SQLSTATE[6]; /* Upper case is required. */

00000 success completion

02000 no data

08000 connection exception

08003 connection does not exist

22012 division by zero

……

COSC344 Lecture 13 18

Status Variables Example
EXEC SQL BEGIN DECLARE SECTION;

varchar fname[16], lname[16];
Char ird[10];
int dno, dnumber;
int SQLLCODE; char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT Fname,Lname

INTO :fname, :lname

FROM EMPLOYEE WHERE ird = :ird;

If (SQLCODE == 0) /*or (strncmp(SQLSTATE,"00000",6)) */

printf(fname, lname, ird)

else

printf(“Ird does not exist!”)

COSC344 Lecture 13 19

SQLCA

• SQLCA (SQL Communications Area) is an ORACLE
data structure

• It holds status information provided by ORACLE after
each statement is executed
– ORACLE error codes
– warning flags
– count of rows processed
– Diagnostics

• SQLCA is defined in the header file sqlca.h

COSC344 Lecture 13 20

SQLCA struct
struct sqlca
{
char sqlaid[8];
long sqlabc;
long sqlcode;
struct
{

unsigned short sqlerrml;
char sqlerrmc[70];

} sqlerrm;
char sqlerrp[8];
long sqlerrd[6];
char sqlwarn[8];
char sqlext[8];

}

Identify the SQL Communication Area
The length(in bytes) of the SQLCA structure
The status code of the most recently executed SQL
statement

Length of the message text in sqlrrmc
Text corresponding to the error code

Reserved for future use
Sqlerrd[2] holds the number of rows processed
Warning flags

Reserved for future use

COSC344 Lecture 13 21

sqlglm() Function

void sqlglm (char *buffer, size_t *buffer_size,
size_t *return_length)

buffer - text buffer into which you want Oracle to
store the error message. Oracle blank-pads
to the end of the buffer.

buffer_size - specifies the maximum size of the
buffer in bytes

return_length - a variable into which Oracle stores
the actual length of the error message

• sqlglm() can be used to get the message in sqlerrmc

COSC344 Lecture 13 22

Example 2 - upemp

• Asks for an employee’s IRD, retrieves and displays
the first and last names and current salary, asks for a
new salary, and updates the database.

• Checks for errors

• Source code: /coursework/344/oracle-C/upemp.pc

COSC344 Lecture 13 23

Host Variable Indicator
• Indicator variable is useful for

– In VALUES or SET clause to assign NULLs to input host variable

– In INTO clause to detect NULLs
• Syntax:

• Each time the host variable is used in a SQL statement, a
result code is stored in its associated indicator variable.
– On Input

– On Output

:host_variable INDICATOR :indicator_variable
OR :host_variable:indicator_variable

0 The operation was successful
-1 A NULL was returned, inserted, or updated.

-1 Assign a NULL to the column, ignoring the value of host variable
>=0 Assign the value of the host variable to the column

COSC344 Lecture 13 24

Host Variable Indicator (cont.)
• Inserting NULLs

• Handling Returned NULLs

• Testing for NULLs

short ind_comm = -1;
EXEC SQL INSERT INTO employee (empno,comm)

VALUES (:emp_number, :commission:ind_comm);

EXEC SQL SELECT ename, sal, comm INTO
:emp_name, :salary, :commission:ind_comm From
employee WHERE empno = :emp_number;
if (ind_comm == -1)

pay = salary;
Else pay = salary + commission;

EXEC SQL SELECT ename, sal
INTO :emp_name, :salary
FROM employee
WHERE :commission INDICATOR :ind_comm IS NULL:

COSC344 Lecture 13 25

A New Problem

• The previous examples operated on a single row of a table

• Many queries will return multiple rows to be processed

• Programming languages
– Operate on a tuple at a time

• Database Management Systems
– Return a table at a time

– So far, the returned tables had only one row

• Retrieving multiple tuples using cursors

COSC344 Lecture 13 26

Cursors
• When a query returns multiple rows, defining a cursor

allows us to
– process beyond the first row returned
– keep track of which row is currently being processed

• Cursors are defined and manipulated using
– DECLARE
– OPEN
– FETCH
– CLOSE

COSC344 Lecture 13 27

Declaring Cursors
• Syntax

• Cursor name - similar to a pointer variable
• There is no INTO clause
• Example

EXEC SQL
DECLARE <cursor name> CURSOR FOR
<select-expression>;

EXEC SQL
DECLARE emp_cursor CURSOR FOR
SELECT fname, lname, dno
FROM employee
WHERE fname LIKE 'J%';

COSC344 Lecture 13 28

Opening a Cursor

• Syntax

• Example

• Opens a cursor (which must be closed)
• Gets the query result from the database
• The rows returned become the cursor's current active set
• Sets the cursor to position before the first row. This

becomes the current row.
• NOTE - You must use the same cursor name if you want

data from that cursor.

EXEC SQL OPEN <cursor name>;

EXEC SQL OPEN emp_cursor;

COSC344 Lecture 13 29

Fetching A Row
• Syntax

• Example

• Moves the cursor to the next row in the current active set
• Assigns values to the host variables

EXEC SQL
FETCH <cursor name>
INTO <host variables>;

EXEC SQL
FETCH emp_cursor
INTO :h_fname, :h_lname, :h_dno;

COSC344 Lecture 13 30

Closing the Cursor
• Syntax

• Example

• Closes the cursor (which must be open)
• There is no longer an active set
• Reopening the same cursor will reset it to point to the

beginning of the returned table

EXEC SQL CLOSE <cursor name>;

EXEC SQL CLOSE emp_cursor;

COSC344 Lecture 13 31

Example 3

• Retrieve the first and last name and department number

from the EMPLOYEE table.
– Source code: /coursework/344/oracle-C/empname.pc

• Retrieve the project name and project number for a given

project location
– A user-friendly interface: a menu

– Source code: /coursework/344/oracle-C/query_c_locations.pc

