

Learning Objectives of Lecture 4

- You should
 - be able to convert an ERD to its relation schema using the seven-step method introduced in this lecture
 - understand the following relational operators
 - Select
 - Project
 - Rename
 - Union
 - Intersection
 - Set difference
- Source
 - Textbook: Chapter 9.1, Chapter 8.1-8.2

ER-to-Relational Mapping

A seven-step algorithm to convert the basic ER diagram into a relation schema

ER-to-Relational Mapping (1)

- Step 1: Mapping of Regular Entity Types
 - For each regular entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
 - For a composite attribute, include its simple component attributes.
 - Choose one of the key attributes of E as the primary key for R.
 - If the chosen key was a composite, the set of simple attributes that form it will together be the primary key of R.

EMPLOYEE

ER-to-Relational Mapping (2)

- Step 2: Mapping of Weak Entity Types
 - For each weak entity type W in the ER schema with owner entity type E, create a relation R that includes all simple attributes (or simple components of composites) of W.
 - Include the primary key attribute of the relation that corresponds to the owner entity type E as **foreign key** attributes of R.
 - The primary key of R is the combination of the primary key of the owner and the partial key of the weak entity type, if any.
 - If there is a weak entity type E_2 whose owner is also a weak entity type E_1 , then E_1 should be mapped before E_2 to determine its primary key first.

EMPLOYEE

ER-to-Relational Mapping (3)

- Step 3: Mapping of Binary 1:1 Relationship Types
 - Foreign Key Approach (the most useful approach)
 - Identify the relations S and T that participate in R
 - Choose one of the relations, say S, and include the primary key of T as a foreign key in S. It is better to choose an entity type with total participation in R for the role of S.
 - Include all simple attributes of R as attributes of S
 - Merged relation approach
 - Merge the two entity types and relationship type into one relation
 - Possible when both participations are total
 - Cross-reference approach
 - Set up a third relation to cross-reference primary keys of S and T

EMPLOYEE

ER-to-Relational Mapping (4)

- Step 4: Mapping of Binary 1:N Relationship Types
 - identify the relation S that represents the entity type participating at the N-side of the relationship.
 - Include as a foreign key in S the primary key of the relation T that represents the other entity type participating in R.
 - Include the simple attributes of R as attributes of S.
- How to map 2:N relationship?

EMPLOYEE

ER-to-Relational Mapping (5)

- Step 5: Mapping of Binary M:N Relationship Types
 - For each binary M:N relationship type R, create a new relation S to represent R.
 - Include as foreign key attributes in S the primary keys of the participating entity types.
 - Their combination will form the primary key.
 - Include any attributes of R as attributes of S.
- Step 6: Mapping of Multivalued Attributes
 - For each multi-valued attribute A, create a new relation R.
 - R will include an attribute corresponding to A, plus the primary key attribute K of the relation that has A as an attribute.
 - The primary key of R is the combination of A and K.

EMPLOYEE

ER-to-Relational Mapping (6)

- Step 7: Mapping of N-ary Relationship Types
 - For each n-ary relationship type R, where n>2, create a new relation S.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
 - Include any attributes of R.
 - The primary key of S is usually a combination of all the foreign keys in S.

the second se	the second s	The second se	the state of the s
SNAME	PROJNAME	PARTNO	QUANTITY

Correspondence between ER and Relational Model

Table 9.1 Correspondence between ER and Relational Models

Entity type 1:1 or 1:N relationship type M:N relationship type *n*-ary relationship type Simple attribute Composite attribute Multivalued attribute Value set Key attribute

RELATIONAL MODEL

Entity relation Foreign key (or *relationship* relation) *Relationship* relation and *two* foreign keys *Relationship* relation and *n* foreign keys Attribute Set of simple component attributes Relation and foreign key Domain Primary (or secondary) key

COSC344

The Relational Data Model

The relational model has 3 core components:

- Objects (or relations) structure of the data organization
- **Integrity** enforcing constraints and rules
- **Operators** data manipulation

Relational Algebra

The original relational algebra as described by Codd defines eight operators, in two groups:

special relational operators

- select (or 'restrict')
- project
- join
- divide

set operators

- union
- intersection
- difference ('minus')
- Cartesian product ('times')

SELECT (RESTRICT)

$\sigma_{\text{selection}_{\text{condition}}}$ (R)

Works on a single relation R and select a *subset* of the tuples of R that satisfy the specified *selection_condition*.

- Selection condition clauses are of the form
 - <attr name> <comparison op> <constant>
 - <attr name> <comparison op> <attr name>
- Comparison operators: <, <, >, >, >, =, \neq
- <constant> must be from the attribute domain
- Clauses can be combined with AND, OR and NOT

SELECT (RESTRICT)

Franklin	Т	Wong	3334455555	8-Dec-1955	638 Voss, Houston, TX	Μ	40000	888665555	5
Jennifer	S	Wallace	987654321	20-Jun-1941	291 Berry, Bellaire, TX	F	43000	888665555	4

- $\sigma_{DNO = 4}(EMPLOYEE)$
- σ_{IRD ≠ '123456789'}(EMPLOYEE)
- $\sigma_{(DNO=4 \text{ AND SALARY>25000}) \text{ OR } (DNO=5 \text{ AND SALARY>30000})} (EMPLOYEE)}$

SELECT (continued)

- The SELECT operation is applied to each tuple individually
- The degree of the resulting relation is the same as the original relation
- Number of tuples in the resulting relation is always less than or equal to the number of tuples in the original relation
- SELECT is commutative

 $\sigma_{<cond1>}(\sigma_{<cond2>}(\mathsf{R})) = \sigma_{<cond2>}(\sigma_{<cond1>}(\mathsf{R}))$

A cascade of SELECTs can be combined into a single SELECT

$$\sigma_{< \text{cond1}>}(\sigma_{< \text{cond2}>}(\ldots(\sigma_{< \text{condn}>}(\mathbf{R})))$$

= $\sigma_{\text{<cond1>AND <cond2>AND}}$... AND <condn>(R)

PROJECT

Π<attribute_list>(**R**)

Works on a single relation R and defines a relation that contains **a vertical subset** of R, extracting the values of specified attributes and eliminating duplicates.

- Order of attributes is the same order as they appear in the <attribute_list>.
- Duplicates are removed.
- $\Pi_{<\text{list1>}}(\Pi_{<\text{list2>}}(\mathsf{R})) = \Pi_{<\text{list1>}}(\mathsf{R})$
 - As long as <list2> contains the attributes in <list1>
- Commutative property does not hold for PROJECT.

Try It

Example: List the name and number for each department $\Pi_{DNAME, DNO}$ (DEPARTMENT)

DNAME	DNO
Research	5
Administration	4
Headquarters	1
Dummies	0

- $\Pi_{\text{LNAME, FNAME, SALARY}}$ (EMPLOYEE)
- $\Pi_{\text{SEX, SALARY}}$ (EMPLOYEE)

Sequences of Operations

- Operations can be
 - Nested as a single relational algebra expression
 - Applied one (or a few) at a time, creating intermediate results
- Example
 - $-\Pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO=5}}(\text{EMPLOYEE}))$

Break down a complex sequence of operations into multiple single relational algebra expressions.

- Or
- DEP5_EMPS $\leftarrow \sigma_{\text{DNO=5}}(\text{EMPLOYEE})$
- RESULT $\leftarrow \Pi_{\text{FNAME, LNAME, SALARY}}$ (DEP5_EMPS)
- What is the result?

RENAME Operation

- A formal RENAME operation can rename either the relation name or the attribute names, or both as a unary operator
 - $-\rho_{S}(R)$: rename the relation R to S
 - $-\rho_{(B1, B2, \ldots, Bn)}(R)$: rename the attributes of R
 - $-\rho_{S(B1, B2, ..., Bn)}(R)$: rename both the relation and its attributes

Where S is the new relation name, and B1, B2, ..., Bn are the new attribute names.

The set operators

Set Operations

UNION

- $R \cup S$
- Includes all tuples that are either in R or in S or in both
- Duplicate tuples are eliminated
- INTERSECTION
 - $\mathsf{R} \cap \mathsf{S}$
 - Includes every tuple that is simultaneously in both R and S

SET DIFFERENCE

- R S
- Includes all tuples that are in R but not is S
- UNION and INTERSECTION are associative
 - $\mathsf{R} \cup (\mathsf{S} \cup \mathsf{T}) = (\mathsf{R} \cup \mathsf{S}) \cup \mathsf{T}$
 - $\mathsf{R} \cap (\mathsf{S} \cap \mathsf{T}) = (\mathsf{R} \cap \mathsf{S}) \cap \mathsf{T}$
- SET DIFFERENCE is not commutative
 R-S != S-R
- Must be union compatible or type compatible
 - Have the same degree n, and $dom(A_i) = dom(B_i)$ for all i

Examples

(a)

(b)

STUDENT	FN	LN
	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert

INSTRUCTOR	FNAME	LNAME
	John	Smith
	Ricardo	Browne
	Susan	Yao
	Francis	Johnson
	Ramesh	Shah

FN	LN	
Susan	Yao	
Ramesh	Shah	
Johnny	Kohler	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	
Ernest	Gilbert	
John	Smith	
Ricardo	Browne	
Francis	Johnson	

1	
10	~ 1
~	11
1.46	

FN	LN
Susan	Yao
Ramesh	Shah

(d)

FN		LN	
	Johnny	Kohler	
	Barbara	Jones	
	Amy	Ford	
	Jimmy	Wang	
	Ernest	Gilbert	

(e)	FNAME	LNAME
	John	Smith
	Ricardo	Browne
	Francis	Johnson

Figure 7.11 Illustrating the set operations UNION, INTERSECTION, and DIFFERENCE. (a) Two union compatible relations. (b) STUDENT U INSTRUCTOR. (c) STUDENT \cap INSTRUCTOR. (d) STUDENT - INSTRUCTOR. (e) INSTRUCTOR - STUDENT.

Question to Ponder

• How do we tell the DBMS about our database?