
Learning Objectives of Lecture 5

- You should
 - understand the following relational operators
 - Cartesian product
 - Join
 - Natural join
 - Division
 - be able to represent a query using relational algebra expression
 - be able to use the CREATE TABLE command to define
 - Attributes and their data types
 - Primary key, candidate keys, foreign key
 - be able to insert and retrieve date and time data with a given format
- Source:
 - Text book: chapter 8.3, chapter 6.1-6.2
 - Oracle documentation

CARTESIAN PRODUCT

$\mathbf{Q} = \mathbf{R} \times \mathbf{S}$

Produce a new relation \mathbf{Q} by combining every tuple from relation \mathbf{R} with every tuple from relation \mathbf{S} .

- # attributes in Q = # attributes in R + # attributes in S
- # tuples in Q = # tuples in R × # tuples in S
- Meaningless unless used with other operations
- Also called CROSS PRODUCT
- R and S do not have to be union compatible

CARTESIAN PRODUCT Example

Retrieve the names for each female employee and her dependents.

FEMALE_EMPS <- $\sigma_{SEX=F'}$ (EMPLOYEE)

EMPNAMES $<-\Pi_{FNAME, LNAME, IRD}$ (FEMALE_EMPS)

EMP_DEPENDENS <- EMPNAMES × DEPENDENT

ACTUAL_DEPENDENS <- $\sigma_{ird=eird}$ (EMP_DEPENDENS) RESULT<- $\Pi_{FNAME, LNAME, DEPENDENT_NAME}$ (ACTUAL_DEPENDENS)

CARTESIAN PRODUCT Example (cont'd)

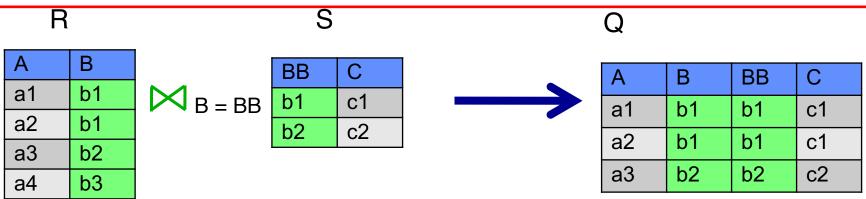
FEMALE_ EMPS	FNAME	MINIT	LNAME	IRD	BDATE	ADDRESS	SEX	SALARY	SUPERIRD	DNO
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Joyce	A	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

EMPNAMES	FNAME	LNAME	IRD
	Alicia	Zelaya	999887777
	Jennifer	Wallace	987654321
	Joyce	English	453453453

EMP_DEPENDENTS	FNAME	LNAME	IRD	EIRD	DEPENDENT NAME	SEX	BDATE	
	Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
	Alicia	Zelaya	999887777	333445555	Theodore	M	1983-10-25	
	Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
	Alicia	Zelaya	999887777	987654321	Abner	M	1942-02-28	
	Alicia	Zelaya	999887777	123456789	Michael	M	1988-01-04	
	Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
	Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
	Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
	Jennifer	Wallace	987654321	333445555	Theodore	M	1983-10-25	
	Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
	Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	
	Jennifer	Wallace	987654321	123456789	Michael	M	1988-01-04	
	Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
	Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	• •
	Joyce	English	453453453	333445555	Alice	F	1986-04-05	
	Joyce	English	453453453	333445555	Theodore	M	1983-10-25	
	Joyce	English	453453453	333445555	Joy	F	1958-05-03	
	Joyce	English	453453453	987654321	Abner	M	1942-02-28	• •
	Joyce	English	453453453	123456789	Michael	M	1988-01-04	
	Joyce	English	453453453	123456789	Alice	F	1988-12-30	
	Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

ACTUAL_DEPENDENTS	FNAME	LNAME	IRD	EIRD	DEPENDENT NAME	SEX	BDATE	
	Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	

RESULT	FNAME	LNAME	DEPENDENT_NAME
	Jennifer	Wallace	Abner


Figure 1.12 An illustration of the CARTESIAN PRODUCT operation.

Lecture 5

JOIN

 $Q = R \bigotimes_{<join condition>} S$ Produce a new relation Q that contains the combinations of tuples in R and

S satisfying the join condition.

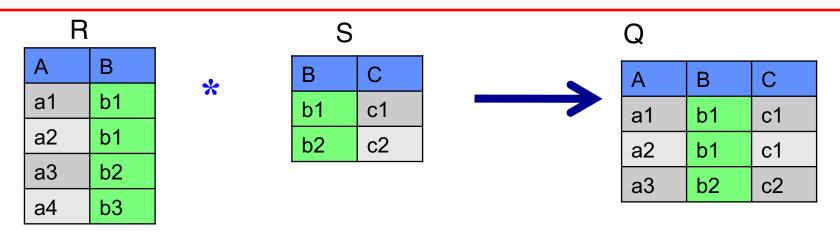
- The main difference from CARTESIAN PRODUCT is that only the combinations of tuples satisfying the join condition appear.
- The join condition can be a compound set of conditions using AND and OR.
- The usual comparison operators are used. When the comparison operator is =, it is called an **EQUIJOIN**.

JOIN (cont'd)

 In the earlier example illustrating CARTESIAN PRODUCT, the following operations

EMP_DEPENDENS <- EMPNAMES × DEPENDENT

ACTUAL_DEPENDENS <- $\sigma_{IRD=EIRD}$ (EMP_DEPENDENS)

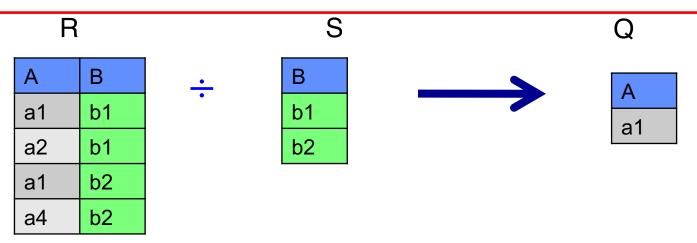

can be replaced with a single JOIN operation

ACTUAL_DEPENDENS <- EMPNAMES *IRD=EIRD* DEPENDENT

NATURAL JOIN

$\mathbf{Q} = \mathbf{R} * \mathbf{S}$

Performs an Equijoin of the two relations \mathbf{R} and \mathbf{S} over all common attributes. One occurrence of each common attribute is eliminated from \mathbf{Q}

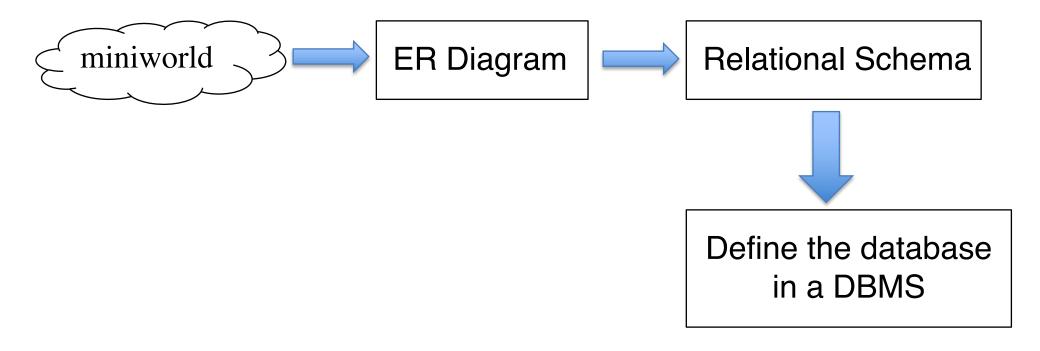


- The standard definition requires that the two join attributes (or each pair of join attributes) have the same name in both relations.
- If not, a renaming operation is applied first.

DIVISION

$\mathbf{Q} = \mathbf{R} \div \mathbf{S}$

Produce a relation Q in which each tuple must appear in \mathbb{R} in combination with *every* tuple in \mathbb{S} .



 Can be expressed as a sequence of PROJECT, CARTESIAN PRODUCT and DIFFERENCE

$$Q_1 <- \Pi_A (R)$$

 $Q_2 <- \Pi_A ((S \times Q_1) - R)$
 $Q <- Q_1 - Q_2$

A Complete Set of Relational Operators

- The six primitive relational operators are:
 - SELECT
 - PROJECT
 - UNION
 - DIFFERENCE
 - CARTESIAN PRODUCT
 - RENAME
- Any other original relational operators can be expressed as a sequence of operations using the above six operators.
- The relational algebra includes operators like JOIN and DIVISION as they are convenient to use in database applications.

SQL - History & Introduction

- Structured Query Language (SQL)
- Standard
 - ANSI & ISO
 - SQL (1986)
 - SQL2 (1992)
 - SQL3 (1999)
 - SQL 2003
 - SQL 2006
- Declarative
- Includes DDL and DML
- Other facilities
- Standard
 - Well almost

The CREATE Statement

- The main SQL command for data definition, which can create – Schema, table, view, assertions, triggers, …
- A simple CREATE table example

CREATE TABLE test

(i INT,

- r NUMBER(6,2),
- s VARCHAR2(20));
- Convention on SQL-scripts
 - Case is unimportant except for text strings.
 - Using upper case letters for SQL keywords and lower case for other things.

Data Types

- Oracle Built-in data types
 - NUMBER(p, s): precision $p \in [1,38]$, scale $s \in [-84, 127]$
 - CHAR(size): fixed-length character data
 - VARCHAR2(size): variable-length character string
 - DATE
 - CLOB: a large object containing characters
 - BLOB: a binary large object
 - BFILE: contains a locator to a large binary file

— . . .

- ANSI Data types
 - INTEGER/INT: equivalent to NUMBER(38)
 - CHARACTER(n): equivalent to CHAR(n)

— ...

Refer to Oracle Documentations for more detailed data types

The CREATE TABLE Command

- Used to create a new relation by
 - Giving it a name, specifying its attributes and data types
 - Specifying constraints: attributes, tuples, key and referential integrity
- CREATE TABLE syntax

```
CREATE TABLE tablename (
    column1 datatype [constraint][,
    [CONSTRAINT [symbol]] PRIMARY KEY [index_type]
                      (index_col_name,...)[index_option] ...
[CONSTRAINT [symbol]] FOREIGN KEY
    [index_name] (index_col_name,...) reference_definition
CHECK (expr)
```

Attributes Constraints

NOT NULL

- Specify that attribute values are not allowed to be set to NULL
- Always implicitly specified for attributes that are part of the primary key
- Attribute Defaults: DEFAULT <value>
 - The default value is included in any new tuple if an explicit value is not provide for that attribute

- Example: Dno INT NOT NULL DEFAULT 1,

- CECHK clause
 - Restrict attribute or domain values following an attribute or domain definition
 - Oracle does not have a CREATE DOMAIN command
 - Example
 - Suppose Dnumber is restricted to integer between 1 and 20

Dnumber INT NOT NULL CHECK (Dnumber >0 and Dnumber <21),

Key and Entity Integrity Constraints

- PRIMARY KEY clause
 - The primary key is a single attribute

Dunmber INT PRIMARY KEY,

– The primary key is a composite of multiple attributes

PRIMARY KEY (Eird, Pno),

• UNIQUE clause: specifies candidate keys

Pname VARCHAR2(15) NOT NULL UNIQUE,

Referential Integrity Constraints

- FOREIGN KEY clause: specifies referencing integrity
 - Can be defined by following the attribute directly

dnum INT NOT NULL REFERENCES department(dnumber),

– Can be defined using the FOREIGN KEY clause

FOREIGN KEY (dnum) REFERENCES department(dnumber),

- Specify actions to deal with integrity violations
 - SET NULL, CASCADE, SET DEFAULT

FOREIGN KEY (Superird) REFERENCES employee(ird) ON DELETE SET DEFAULT ON UPDATE CASCADE,

Giving Names to Constraints

- The names of all constraints within a particular schema must be unique.
- A constraint name is used to identify a particular constraint in case the constraint must be dropped later or replaced with another constraint.

CONSTRAINT superird_cnst REFERENCES employee(ird),

A Complex CREATE TABLE Example

CREATE TABLE EMPLOYEE

```
(Fname VARCHAR2(10) NOT NULL,
```

```
Minit CHAR,
```

Lname VARCHAR2(50) NOT NULL,

```
Ird CHAR(9) PRIMARY KEY,
```

```
Bdate DATE,
```

```
Address VARCHAR2(30),
```

```
Sex CHAR CONSTRAINT sck CHECK (sex IN ('M', 'F')),
Salary DECIMAL(10,2),
```

```
Superird CHAR(9)
```

CONSTRAINT superird_cnst REFERENCES EMPLOYGEE(ird) DISABLE, Dno INT NOT NULL DEFAULT 1 REFERENCES DEPARTMENT(Dnumber));

Date and Time

SQL specifies

- DATE: Year, Month and Day in the form YYYY-MM-DD
- TIME: Hour, Minute and Second in the form HH:MM:SS
- TIMESTAMP: include both DATE and TIME plus a minimum of six positions for decimal fractions of seconds in the form YYYY-MM-DD HH:MI:SS[.sssss]

Oracle uses DATE for both date and time

- DD number of days in month (e.g., 24)
- MM numeric month (e.g., 07)
- MON abbreviated month name (e.g., JUL)
- MONTH full month name (e.g., JULY)
- YY last two digits of year (e.g., 12)
- YYYY all digits of year (e.g., 2012)
- HH (or HH12) hours of the day in 12 hour format
- HH24 hours of the day in 24 hour format
- MI minutes of the hour
- SS seconds of the minute

- ...

Date and Time in Oracle

- Use TO_DATE to specify the format
 - TO_DATE('string', 'format')
 - Must be used when entering dates
 - e.g, TO_DATE('20-03-2000','dd-mm-yyyy')

```
INSERT INTO x VALUES
(....., TO_DATE('27-Jul-2010', 'dd-mon-yyyy'));
```

- Use TO_CHAR to format the output of a date
 - TO_CHAR(attr, 'format')
 - TO_CHAR(bdate, 'dd/mon/yy')

SELECT TO_CHAR (bdate, 'dd/mon/yy') FROM EMPLOYEE;

DROP/ALTER TABLE in Oracle

• DROP TABLE:

DROP TABLE table [CASCADE CONSTRAINTS];

 CASCADE CONSTRAINTS: drop all referential integrity constraints that refer to primary and unique keys in the dropped table.

DROP TABLE project;

DROP TABLE employee cascade constraints;

• ALTER TABLE

ALTER TABLE table

[ADD/DROP (column_element

constraint)]

[MODIFY (column_element)]

[ENABLE | DISABLE constraint]

- Add or drop a column
- Change a column definition
- Add or drop a column constraint

ALTER TABLE in Oracle

• Add a column

ALTER TABLE employee ADD Job VARCHAR(12);

Change a column definition

ALTER TABLE employee MODIFY Mgrird SET DEFAULT '333445555';

• Add a column constraint

ALTER TABLE employee ADD CONSTRAINT superird_cnst FOREIGN KEY (Superird) REFERENCES employee(ird);

ALTER TABLE employee ENABLE CONSTRAINT superird_cnst;

Summary

- Relational algebra
 - Cartesian product
 - Join
 - Natural join
 - Division
- SQL DDL
 - CREATE TABLE
 - Data types
 - Constraints
 - DROP TABLE
 - ALTER TABLE