
COSC344 Lecture 8 1

COSC344
Database Theory and Applications

Lecture 8
Functional dependencies

COSC344 Lecture 8 2

Learning Objectives of this Lecture
• You should

– understand the four informal guidelines for measuring the
quality of a relational schema.

– understand what is a functional dependency.
– understand what is decomposition and the three properties

of a successful decomposition.
– understand the inference rules and Armstrong’s Axioms.
– be able to compute the closure for a set of attributes under a

set of functional dependencies.
– be able to compute the minimal cover for a set of functional

dependencies.

• Source
– Textbook: Chapter 14.1-14.2, Chapter 15.1

COSC344 Lecture 8 3

Questions to Ponder

• What constitutes a good database design?
• When you turn your ER diagram into tables, is the

resultant set of tables the most desirable?
• How can we decide whether a given set of tables is

“good”?
• Is it possible for a set of tables to cause us grief later on?

COSC344 Lecture 8 4

Quality Measures for Relation Schema
• Four informal guidelines

– Make sure that the semantic of the attributes is clear in the
schema

– Reducing redundant values in tuples
– Reducing NULLs in tuples

– Disallowing the generation of spurious tuples when tables are
joined

COSC344 Lecture 8 5

Guideline 1:
• Design a schema in a way that it is easy to explain its meaning.
• Do not combine attributes from multiple entity types and relationship

types into a single relation.

Semantics of the Attributes

• Consider these relations
– Are they good designs?

ENAME SSN BDATE ADDRESS DNUMBER DNAME DMGRSSN

EMP_DEPT

EMP_PROJ

SSN PNUMBER HOURS ENAME PNAME LOCATION

IRD

IRD

DMGRIRD

COSC344 Lecture 8 6

Redundancy

IRD

IRD

DMGRIRD

COSC344 Lecture 8 7

Redundant Information in Tuples

• Insertion anomalies
– What happens if we insert a new employee into EMP_DEPT?
– What happens if we want to insert a new department that does

not yet have any employees?
• Deletion anomalies

– What happens if we delete the last employee who works for a
department?

• Modification anomalies
– What happens if the manager of a department is changed?

Guideline 2:
Design the schemas so that there are no insertion, deletion
or modification anomalies.

COSC344 Lecture 8 8

Reducing Null Markers in Tuples
• If many attributes in a schema do not apply to all tuples,

many NULLs exist.
– Takes up storage space
– Problems with understanding the meaning of the attributes
– Problem with join operations
– Hard to account for them in aggregate functions

• Multiple interpretations of NULL
– The attribute does not apply to this tuple.
– The attribute value of this tuple is unknown.
– The attribute value of this tuple is known, but is absent.

Guideline 3:
• Avoid placing attributes in a relation whose value frequently

may be null.
• If nulls are unavoidable, make sure they apply in exceptional

cases only, and do not apply to a majority of tuples

COSC344 Lecture 8 9

Generation of Spurious Tuples

IRD

IRD

COSC344 Lecture 8 10

Generation of Spurious Tuples (cont’d)
IRD

COSC344 Lecture 8 11

Generation of Spurious Tuples (cont’d)
• The table in the previous slide contains tuples not in the

original table. These tuples are called spurious tuples
which represent information that is not valid.

Guideline 4:
• Design schemas so that they can be joined with equality

conditions on attributes that are either primary keys or foreign
keys in a way that guarantees no spurious tuples are created.

• Do not have relations that contain matching attributes other
than primary key-foreign key combinations because joining on
such attributes may produce spurious tuples.

Is there a formal tool for analysis of
relational schemas that enables us to
detect and describe the mentioned

problems in precise terms?

COSC344 Lecture 8 13

Informal Introduction to Functional Dependency

• Person (PID, NAME, AGE, ADDRESS)

• F = {PID → NAME, PID → AGE, PID → ADDRESS}

• The notation PID → AGE means that PID determines AGE
or AGE is functionally dependent on PID.

• Many real world situations which lead to data restrictions or
constraints in the modelled world.

– You can’t be in two places at the same time

{Person, date, time} ® Place

PID

NAME

AGE

ADDRESS

COSC344 Lecture 8 14

Formal Definition of Functional Dependency
• A functional dependency (FD), denoted by X → Y where X

and Y are two subsets of attributes of a relation, specifies a
constraint on the possible tuples that can form a state of the
relation. The constraint is that, for any two tuples t1 and t2
that have t1[X] = t2[X], we must also have t1[Y] = t2[Y].

• The Y values of a tuple depend on or are determined by the
X values; or the X value determines the Y value.

• The set of attributes X is called the left-hand side (LHS) of
the FD, and Y is called the right-hand side (RHS).

• Diagrammatic notation
ENAME SSN BDATE ADDRESS DNUMBER DNAME DMGRSSN

EMP_DEPT

EMP_PROJ

SSN PNUMBER HOURS ENAME PNAME LOCATION

FD1

FD2

FD3

IRD

COSC344 Lecture 8 15

Observations About FD's

• If X → Y, whenever two tuples have the same X value,

they must necessarily have the same Y value.

• If X is a candidate key of a relation, then X → Y for any

subset of attributes Y of the relation.

• If X → Y, it does not imply Y → X.

• A FD is a property of the semantics or meaning of the

attributes.

• A functional dependency is a property of the schema not a

property of a particular instance.

• The main use of functional dependencies is to describe

further a relation schema by specifying constraints on its

attributes that must hold at all times.

COSC344 Lecture 8 16

Decompositions

• Decomposition is the process of breaking down a relation schema

R into a set of relation schemas D={R1,R2,…, Rm} to get rid of

unwanted dependencies.

– A decomposition is just a relational algebra PROJECT

• Properties of a successful decomposition

– Attribute preservation: each attribute in R will appear in at least one

relation schema Ri so that no attributes are lost.

– Dependency preservation: each functional dependency X → Y

specified on R either appeared directly in some Ri in D or could be

inferred from the dependencies that appear in some Ri.

– Lossless join: no spurious tuples are generated when a NATURAL

JOIN operation is applied to the relations resulting from the

decomposition.

• Heath’s Theorem (1971)

A relation R(X,Y,Z) that satisfies a functional dependency X → Y can

always be non-loss decomposed into: R1 [X, Y] and R2 [X, Z]

COSC344 Lecture 8 17

• Reflexive rule
– If Y is a subset of X, then X → Y
– Sometimes stated X → X

• Augmentation rule
– If X → Y, then XZ → YZ
– Also X → Y implies XZ → Y

• Transitive rule
– If {X → Y, Y → Z}, then X → Z

• Decomposition or projective rule
– If X → YZ, then X → Y and X → Z.

• Union or additive rule
– If {X → Y, X → Z}, then X → YZ

• Pseudotransitive rule
– If {X → Y, WY → Z}, then WX → Z

Inference Rules for Functional Dependencies

COSC344 Lecture 8 18

Closure

• Use F to denote the set of functional dependencies that
are specified on a relation R

• Closure of F, denoted by F+, is defined as the set of all
dependencies, that is,

F and all dependencies that can be inferred from F.

• Given R(A, B, C) and F = {A → B, B → C}, what is F+?

F+ = { A → A, B → B, C → C,
AB → AB, AC → AC, BC → BC, ABC → ABC,

AB → A,..................
A → B, AB → B, AC → B, ABC → B,
B → C, AB → C, BC → C, ABC → C,
B → BC, A → ABC,...............................}

COSC344 Lecture 8 19

Equivalence of Sets of Functional Dependencies

• A set of functional dependencies F is said to cover another
set of functional dependencies E if every FD in E is also in F+

– That is, if every dependency in E can be inferred from F;
– Alternatively, we can say the E is covered by F.

• Two sets of functional dependencies F and G are equivalent
if F+ = G+.
– Equivalence means that every FD in F can be inferred from G,

and every FD in G can be inferred from F.

COSC344 Lecture 8 20

The closure of a set of attributes
• Given a set of functional dependencies F and a set of

attributes X, the closure of X under F, denoted by X+, is the
maximal set of attributes determined by X.

• Algorithm to compute X+

• Example:
R(A, B, C) and F = {A → B, B → C}

• Is {B,C} a candidate key? Why?
• Does F imply BC→ A?

X+:= X;
repeat

oldX+:= X+

for (each FD Y → Z in F) {
if (Y Í X+) then

X+ = X+ È Z;
}

until (X+ = oldX+);

{A}+ = {A, B, C}
{B}+ = {B, C}
{C}+ = {C}

{A, B}+ = {A, B, C}
{B, C}+ = {B, C}
{A, C}+ = {A, B, C}

{A, B, C}+ = {A, B, C}

COSC344 Lecture 8 21

Minimal Sets of Functional Dependencies
• A set of functional dependencies F is minimal (irreducible) if it

satisfies:
– Every RHS is a single attribute
– Every LHS is irreducible - no attribute is redundant
– No FD in F is redundant

• Algorithm: Given a set of function dependencies E, compute minimal cover F

1. Set F: = E;
2. Replace each functional dependency X→ {A1,A2, …, An} in F with n

functional dependencies X→A1,X→A2,…, X→An
3. For each functional dependency X→A in F

For each attribute B that is an element of X
if {{F – {X→A}} È {(X –{B}) →A} } is equivalent to F

then replace X→A with (X – {B}) →A in F
4. For each remaining functional dependency X→A in F

if {F – {X→A}} is equivalent to F
then remove X→A from F.

COSC344 Lecture 8 22

Minimal Cover - example
E = { A → B, AB → D, C → AD, C → J }
Step 1: F = E={ A → B, AB → D, C → AD, C → J }
Step 2: F = { A → B, AB → D, C → AD, C → J }

F = { A → B, AB → D, C → A, C → D, C → J }
Step 3:

F = { A → B, AB → D, C → A, C → D, C → J }
F = { A → B, A → D, C → A, C → D, C → J }

Step 4:
F = { A → B, A → D, C → A, C → D, C → J }
F = { A → B, A → D, C → A, C → J }

COSC344 Lecture 8 23

Summary
• Informal design

– 4 design guidelines
• Formal definition of Functional Dependency

– Observations about FD
– Inference rules
– Armstrong's Axioms
– Closure
– Equivalence
– Minimal sets of FD

