
COSC345 Software Engineering
Complex Systems and Exception Handling

Richard A. O’Keefe

July 13, 2017



References
I “Kode Vicious: Forced Exception Handling”,

George V. Neville-Neil, CACM 2017 vol.80
No.6 pp 31–32.

I “Simple testing can prevent most critical
failures”, Adrian Colyer, Blog “the morning
paper”, 6 Oct 2016.

I “Simple Testing Can Prevent Most Critical
Failures: An Analysis Of Production Failures In
Distributed Data-Intensive Systems”, Ding
Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay
U. Jain, and Michael Stumm, 11th USENIX
Symposium on Operating Systems Design and
Implementation, 2014.



What Yuan et al did

I They looked at 5 distributed systems:
Cassandra, HBase, Hadoop Distributed File
System, Hadoop MapReduce, and Redis.

I They selected 198 failures at random from a
collection of user-reported failures.

I They tried to understand how single or multiple
faults because user-visible failures.



How Complex Systems Fail

I What should we expect Yuan et al to find?

I We should expect failures to result from the
interaction of multiple faults.

I We should expect the parts of the programs
that are supposed to handle failures to be the
parts that fail.



Findings 1

I Almost all failures require only 3 or fewer nodes
to reproduce.

I Multiple inputs are needed to trigger the
failures with the order between them being
important.

I The error logs of these systems typically
contain sufficient data on both the errors and
the input events that triggered the failure,
enabling the diagnose and the reproduction of
the production failures.



Findings 2

I The majority of catastrophic failures could
easily have been prevented by performing
simple testing on error handling code . . . even
without an understanding of the software
design.

I Over 30% of the catastrophic failures would
have been prevented [using] three simple rules.

I Almost all (92%) of the catastrophic system
failures are the result of incorrect handling of
non-fatal errors explicitly signalled in software.



The Three Flaws

I A handler catches errors but does nothing
about them (other than writing a log entry).

I A handler has a catch that is too general and
aborts the system.

I A handler has “TODO” or “FIXME” in it.



History 1

Exception handling is younger than procedure calls
and garbage collection (1950s) but older than
object orientation (1967).
(ERRORSET form) in Lisp 1.5 (1960) evaluates
form. If an exception occurs, ERRORSET returns
NIL, otherwise the value of form.
(ERROR culprit) raises a specific exception and
saves culprit where handling code can find it.



History 2

Popularised by PL/I (1965). Present in Burroughs
Algol (1965).
Language-defined fixed set of exceptions.
Elsewhere exceptions generally handled by GOTO
(Fortran alternate returns) or callbacks (Algol 68
file error handling) or IF statements conditional on
return codes (BCPL, C).
CLU (1974) exceptions were declared and bound to
methods.



A key problem

All other name-based associations in a program are
static. Use a variable? The name must be in scope.
Call a procedure? The name must be in scope.
Raise an exception? You have no idea where the
handler will be.
CLU and Java try to tame this by forcing you to
declare the exceptions a procedure can raise, but
some exceptions are so common Java gives up on
those.



Flaw 1: Ignoring errors

Often seen in student code:

try . . . {
. . .

... } catch (Exn e) {
System.err.println(e);

}

If the exception is raised, it is logged, but the
program otherwise continues as if nothing had
happened. Variables and objects are typically in a
bad state.



Don’t do that!

An exception handler must either

I restore all variables and objects that the try
block may have changed/was supposed to set
up to a usable state, or

I raise another exception, or

I kill the thread, or

I kill the process.



But how do we know what changed?

try . . . {
foo.bar(. . . );
ick.ack(. . . );

} catch (Exn e) {
which statement raised e?

}



Keep try blocks simple.

The bigger the block, the less you know about what
might have changed and where the exception might
have come from.
Each try block should do one task simply.



How do we know what changed?

I Make variables final if possible so you know
the try block couldn’t change them.

I Use immutable objects as much as you can.

I Mutable objects that could be shared with
other code should not be used in try blocks.

I Anything else must be assumed dangerously
wrong after an exception.



Flaw 2: Over-general catch

I There is an exception class Exn with subclasses
Exn1 and Exn2.

I You have a try-catch construct where Exn1
and Exn2 should be handled the same way.

I You write a single catch for Exn.

I But then or later, Exn also has a subclass Exn3
which should not be handled that way.

I Oops.



Don’t do that

I Be extremely cautious about handling an
exception that has subclasses.

I If two exceptions should be handled the same
way, write two handlers calling a common
procedure.

I If your programming language won’t let you do
that, find a better programming language.



Flaw 3: TODO/FIXME

I Why are you shipping code like that?

I You must test all your code, including
exception handlers.

I Use test coverage tools to make sure you have
done so.

I Ensure that there is a way to inject faults so
that you can exercise handlers.



Alternative views

“The very real problems of survival after a
component violates its specification is not addressed
by exception handling.” — Andrew P. Black, Thesis
1982, “Exception Handling: The Case Against.”
“Let it crash!” — Joe Armstrong, designer of
Erlang. Light-weight processes, no mutable
variables, crashed processes can dump their state for
debugging and can be automatically restarted by a
supervisor process.


	Lecture

