
COSC345 Week 10

Reverse and Re-Engineering

19 September 2017

Richard A. O’Keefe

1

Objectives

Understand re-engineering as a maintenance activity

Understand what reverse engineering is

Appreciate ethical issues of reverse engineering.

Appreciate legal issues of reverse engineering

2

References:

∼ok/COSC345/Copyright Act 1994.pdf

http://en.wikipedia.org/wiki/Reverse engineering (Wikipedia)

http://www.acm.uiuc.edu/sigmil/RevEng/

https://pewpewthespells.com/re.html

Chapter 34 in the 5th edition of Sommerville

Chapter 28 in the 6th edition of Sommerville (+ 26)

Largely missing from the 7th edition, but see chapter 21.

3

Outline

Topicality

Reverse Engineering

Re-engineering

4

Topicality

The Erlang implementation uses Erlang and C.

There is a “new kid on the block”: Rust.

C level, but memory safety proved by compiler.

Discussion this week: rewrite Erlang in Rust?

Question for you: why? Why not?

5

The NZ Copyright Act 1994

Making a backup copy of software is OK (s80)

Decompilation is OK if necessary to make a separate program to
work with the original, not a clone (s80A)

Making a copy to fix it is OK if “a properly functioning and error-
free copy of the program is not available ... within a reasonable
time at an ordinary commercial price’’ (s80B)

“observing, studying, or testing the functioning of [a] program’’ is
OK if you’re doing something else OK at the time (s80C).

Contractual terms trying to stop you doing something legal have
no effect (s80D).

6

Copyright Act, again

You must be a lawful user of the program.

“Studying’’ a program is only allowed “while performing the acts of

loading, displaying, running, transmitting, or storing the program’’

that you are otherwise entitled to do.

Decompilation to develop workalikes is forbidden.

Decompilation is forbidden if you could learn what you need some

other way.

7

Laws and ethics

The law doesn’t always allow what is right.

The law sometimes allows what is wrong.

Different countries have different laws.

Laws change.

ACM code 3.13: Be careful to use only accurate data derived by

ethical and lawful means, and use it only in ways properly autho-

rized.

8

Forward Engineering

1. Gather requirements

2. Produce specification

3. Write documentation

4. Write test cases

5. Write code

6. Test

7. Deliver
9

Re-engineering

Each stage builds on products and documents of previous stage

Re-engineering starts from earlier stage and works forward again

Sometimes design documents are missing

One kind of improvement restructures code so that changes will be

well localised and testable

Reverse engineering reconstructs missing design documents or cleans

up existing ones so future changes have a solid base.

10

Reverse Engineering

Travel backwards in “forward engineering time”

From object code, reconstruct assembly code

dis does this for .o files

otool does it for Mac OS X

javap does this for .class files.

From object or assembly, reconstruct source code

Java decompiler example (available for download).

11

Reverse Engineering demo

Source file: tris.c

Compiler (cc -m32 -O -S) output: tris.macos

Disassembler (otool -t -V -p main): tris.otool

Source file: tris.java

javap -p -verbose: tris.javap2

JD-GUI output: tris.jdgui

12

Reverse Engineering (2)

From source code, reconstruct test cases

From source code, reconstruct specification

Minimally, which arguments may not be NULL pointers?

Check reconstruction by testing.

Reconstruct requirements

No tools here, have to guess what humans were thinking.

13

Beware!

Reverse engineering someone else’s code is illegal in many parts of

the world.

Only disassemble or decompile code that you have a legal right to.

14

Documentation

Documentation may be missing. Example: EMAS Pop-2 manual
cannot be found.

Documentation may be incomplete.

Example: Pop-2 reference manual says errors are reported by calling
errfun(culprit, errno), but does not say which errors are detected
or what numbers are assigned.

Documentation may be incorrect.

Example: Pop-2 reference manual says “errfun” is in section 9.2,
but it’s in 11.1.

You may have to rewrite documentation!

15

Source code translation I

There are dialect converters (for example, Classic C to C89, HTML

to XHTML) and language converters (f2c, p2c)

Some are just for compiling (Stalin), some generate readable code

(p2c).

Commercial translation services exist.

Conversion always requires human judgement

Sommerville says “in-line comments are lost”. He is wrong.

16

Source code translation II

With a foreign function interface, you may be able to convert one

module or function at a time.

Dialect and language conversion doesn’t help with libraries.

Beware of calling sequence changes (f77 to f95).

Old-to-new much easier than new-to-old.

17

Why do we do reverse engineering?

Because we have to.

The purpose of maintenance is to preserve the value of a program

to customers through time.

If it costs too much to make changes, we have to clean up the cost

somehow.

This typically means moving back and then re-engineering.

18

An example of dialect conversion

Old AWK had no function or delete

It was also missing some functions.

Therefore we need to replace newly reserved words.

sub(/N*(function|delete|...)/, "N&", id)

— but need at least lexical analysis to get this right (not inside

comments, strings, or regular expressions)

19

