

COSC345

Introduction to Refactoring (B)

Extract subclass

● A class has some fields or methods that are not
always applicable or useful.

● So create a new subclass and move those
fields and/or methods there.

● Example: not all InputStreams can support a
#peek method, so create a
PeekableInputStream (abstract) class, and
move #peek and everything that depends on it
there.

Extract superclass

● You have two or more classes with a lot in
common.

● So create a new superclass for them, and move
as much common stuff as you can up into it.

● Example: Bags and Sets are very similar, so
create AbstractSetLikeCollection to be their
parent. (In my library it has 66 instance
methods and 63 class methods.)

Extract superclass and sibling

● You have a class with some conditional
behaviours. The condition does not change
after creation.

● So create a new superclass, move the
unconditional methods there, and a new sibling,
with one code for one condition moving to one
subclass, and for the other to the other.

● Example: Heap -> AbstractHeap [Heap,
BoundedHeap]

Merge only child

● A parent class has only one child and you do
not expect more.

● So merge the child into its parent.

● This is the opposite of extract superclass or
extract subclass.

Encapsulate field.

● A field is mutable.

● So ensure that it cannot be accessed directly
outside the class.

● If you want it to be readable outside the class,
create a getter method.

● If you want it to be modifiable outside the class,
think again. If you still want this, create a setter
method, and include code to check that the new
value is reasonable.

Remove dangerous setters

● If a field should not be changed after
initialisation,

● ensure that no public methods can change it, in
particular that there are no setters for it.

● In Java, use 'final' if possible.

Virtualise field

● Most instances of a class have the same value
for a particular field.

● Replace that field by a static weak hash table
mapping instances of the class to values for the
field.

● obj.getField() => if fieldMap has-key obj then
fieldMap 's-value-for obj else default-value.

●

Encapsulate method.

● If a method isn't intended to be part of the public
interface of a class, make it as local as possible
(private beats protected beats package beats
public).

● Public methods may have to check their
arguments; private methods should not need to.

● It is much safer to change private methods.

Combine similar methods

● You have two or more functions/methods that are
almost the same.

● Create a new private function/method that expresses
what they have in common, with extra parameter(s) to
express the differences.

● Make the old functions/methods call the new one.
● Classic example: write to a file and convert to a

stream don't different in what to generate, just where
to send it.

Pull method up

● You have subclass methods that do the same
thing.

● So pull one copy up into the superclass and
delete the others.

● If a class has some subclasses with such a
method and others without, is it missing from
the ones without? Is it harmless to add to
them?

You

Push method down

● A class has a method.

● It makes sense for some of its subclasses but
not all.

● So push it down into the ones where it does
make sense.

● That makes copies; should the copies be
different in their new homes (simpler?)

● Alternatively ...

Partition subclasses

● A class has several subclasses. Some of them
have a property in common, the others don't.

● So make a new subclass, and make the ones
with the common property subclasses of that
instead.

● What if there are two incompatible properties?

● How does a support tool know what properties
a class has?

Convert constructor to factory

● You have several constructors, but it is hard to
tell them apart.

● Or you want a "constructor" that actually returns
an instance of a subclass, or an existing
instance.

● Ensure that you have one constructor, maybe
private, that can initialise everything, and
convert others to factory methods.

