
COSC345 Week 6 Notes
No-one should have any difficulty finding their own examples for this pair

of lectures. The Swedish example might well stand; a native speaker of English
might puzzle out (Hjalp/help, oss/us, ?, ?, ?, miljo/milieu) some of the words,
though not enough to be useful, and I’d expect a native speaker of Arabic with
no prior exposure to Swedish to be confused. Or they could try something in
a familiar script but a different language, perhaps Turkish or Malay written in
Arabic script. But I would expect students in Oman to already be much more
sensitive to this issue than New Zealand students. At least we find the American
language to be close enough to English to be intelligible, and the only major
difference is the way dates are written.

Even here, it can be a problem. About 2010 my elder daughter was playing
“maths games” on a web site recommended by her school, and ran into trouble
with a “making change” exercise. The game presented sums of money which
you were required to make up by clicking on pictures of banknotes and coins.
American banknotes and coins. It was easy enough to figure out what a $1 note
was, because it was labelled $1. (We don’t have a $1 note any more, and when
we did it was brown, not green.) But the coins threw her. Our coins used to go
1, 2, 5, 10, 20, 50, and now go 10, 20, 50, 100, 200. The American pattern of
1, 5, 10, 25 (and a 50 that they never seem to mention but does actually exist)
was entirely novel, and the fact that the 10 cent coin is smaller than the 5 cent
one caused much confusion. If the coins had been labelled with their values as
well as their pictures, she might never have noticed that they were unfamiliar.

These days I really ought to mention “globalisation” (G11N) as well as in-
ternationalisation (I18N) and localisation (I10N).

Globalisation = thinking about the global market as part of business plan-
ning and seeking local input and taking it seriously. (Example: a company that
paid a large amount to have 5 out of 30 manuals translated into Japanese, and
only found out accidentally that the one that their Japanese customers really
wanted wasn’t one of those 5.)

Internationalisation = developing software so that peculiarities of the de-
velopers’ culture aren’t wired in; everything you might need to vary for different
local markets should be replaceable. (Mac OS “resource forks”, copied by Win-
dows, and Java “resource bundles”; UNIX “message catalogues”.)

Localisation = adapting internationalised software to a particular local
market (culture, locale, etc).

Frankly, this set of lecture notes is mainly intended to make students aware
of the problems, and is not expected to equip them to deal thoroughly with the
issues. For example, I’ve said nothing whatever about writing documentation for
translation. It turns out that writing documentation that you really expect to be
translated is not the same thing as writing documentation for one local market
only. Shorter simpler sentences, controlled vocabulary (say 2000 different words
rather than 20,000) shared across a number of projects (for example, both Apple
and Microsoft have lists of terms with standard translations), avoiding or at least
glossing local allusions, all of these things can
1. reduce the cost of translation
2. improve the quality of the result
3. make the original material easier for customers

1

Here are some things that New Zealand students may not have needed to
think about, but that people in Oman will be painfully aware of:
1. not everyone uses unaccented roman letters
2. not everyone uses American or New Zealand money (dollars and cents)
3. not everyone uses the American way of writing dates
4. not everyone uses the English way either.
5. not everyone uses the Gregorian calendar for everything
6. not everyone writes left-to-right
7. not everyone can put internal capitals in identifiers in

thisVeyUglyStyleThatIsPopularInJavaForSomeStrangeReason

because some scripts don’t have capital letters
and so on. For Oman, the point of these lectures will instead be pointing out
that there are ways to deal with this.

Also to point out that they are not without their problems. If you do not
already have a copy of some edition of the Unicode book (on-line at http://
www.unicode.org/versions/Unicode10.0.0/), get one and read through it at least
once before delivering these lectures. You will find different things to complain
about For example, “There are many complications in the shaping of the Arabic
letter yeh. These complications have led to the encoding of several different
characters”. Or the fact that there are two blocks of “Arabic presentation forms”
as well as the characters you are supposed to use for Arabic, so programs dealing
with Arabic have to cope with multiple possible encodings of the same word.
However, Oman can produce examples of that much more easily than I can.

For handouts, I used to provide copies of some pages from the Unicode book,
and manual pages for the i18n/l10n stuff you find in C: date & time conver-
sion (strftime, strptime), locales (setlocale, localeconv), converting numbers for
money (strfmon), wide character reading and writing (getwc, putwc) and clas-
sification (wctype) etc. This stuff is all available on-line, and I’ve been asked
not to print so much, but yes, you should read these manual pages. I point out
that while you can get the right character for decimal point and thousands sep-
aration, you cannot use this interface (yet) to ask for real Arabic digits instead
of the Western adaptation of them.

Others might prefer to give a quick tour of the international support in
Java, originally from Taligent. In particular, while there’s no standard support
for the Islamic calendar(s) in Java, there is in the “International Components
for Unicode, Java version” ICU4J, which comes from IBM. There’s now an ICU
web site. See http://icu-project.org/icu4j_faq.html for the Java ICU Frequently
Asked Questions. In particular, I expect the question “3. Do you really support
the true lunar Islamic calendar?” to be of interest to Oman.

I am slowlhy adding international calendar support to my own Smalltalk
library. I’ve been reading a lot and thinking a lot about calendars. It’s sur-
prising what you know that isn’t true. For example, I was told years ago that
the Orthodox countries like Greece and Russia had finally switched over to the
Gregorian calendar in the 20th century. If I’ve correctly understood what I’ve
read in Dershowitz and Reingold and on the Web, it’s no such thing. They’ve
switched over to the Revised Julian Calendar, which will agree with the Gre-
gorian calendar for several hundred years, but then they’ll drift apart. (And
at that, most of them still use the Julian calendar to determine the date of

2

Easter.) My main reference has been “Calendrical Calculations” by Dershowitz
and Reingold, and if you don’t have a copy, it’s worth getting one for your li-
brary. There are two problems with supporting “the” Islamic calendar. The real
one is observational; it doesn’t depend on when the moon should be seen by
someone’s formula but on when it is seen. So it is technically impossible to get
it absolutely right. There are several variants in use that can be implemented.
Dershowitz and Reingold describe one based on astronomical calculations, and
also two variants of comparatively simple arithmetic version. There turn out
to be eight variants, not two. And of course different countries make their own
choices. ICU4J follows the Saudis, but not everyone does that. How many
Omani students know not to trust the “Hijri” date calculations in Microsoft
Office for religious (and some civil) purposes?

There is an assumption built into the C date/time functions that the varia-
tion between locales is not a matter of which calendar but just of which names
for things like months and days. Well, in trying to implement calendars like the
Persian calendar in Smalltalk, I’ve run into the problem that French and En-
glish transliterate the Persian month names different ways (and no two English
sources seem to agree either). You really need (calendar × culture → name).
It’s time to look outside the C and Java standards. What does the “Common
Locale Data Repository” (http://cldr.unicode.org) have to say? Find out!

By the way, the autochthonous culture in New Zealand is Māori. So I won-
dered about implementing the Māori calendar. A study at the University of
Waikato found about 45 different month→name (and day-of-month→name)
mappings, from different tribes. So I gave up. (There is an “official” Māori
calendar, which is just the Gregorian calendar with old Māori names recycled.
The real Māori calendar(s) is(are) lunar, with the new year triggered by the rise
of the Pleiades, so that it gets an extra month every so often to catch up.) This
brings out the point that “locales” really are not in one-to-one correspondence
with countries. In Turkey there are Turks and Kurds. In the land of (some of)
my ancestors, there are English-speakers and Gaelic-speakers. In this country,
we have English and Māori, but some “English” speakers speak British English,
some New Zealand English (mostly the same but with different vowels), some
Australian English, some American English (quite different accentuation, e.g.,
someone who plays the piano is a pianist here but a piannist there), some South
African English, etc. The English you find in newspapers here has a surpris-
ingly large number of Māori words in it. But there are regional variations in
Māori as well. For example, you might find a locale mi_NZ for “New Zealand
Māori”, but North Island Māori and South Island Māori didn’t even have the
same repertoire of consonants. (“Otago” is a South Island name which would
be “Otakou” in a northern mouth. Lake Waihola is near Dunedin, but there’s
no “l” in North Island Māori.)

Natural language text is a particular problem. Languages that are used
in many countries are not precisely the same everywhere. I once served as a
translator for an American and a Nigerian. They were both speaking English.
In fact they were both speaking formal English. I could understand both of
them, but they couldn’t understand each other. What if they had been speaking
informally? I might not have understood either of them. At another University,
I once observed two Indian lecturers, both speakers of “Hindi”, talking to each
other in English, because that was the only way they could understand each
other. Now in Arabic you have Classical Arabic, “the pure language of the

3

Quraish”, and you have Modern Standard Arabic, and you have the vernaculars
of various countries, which are even more different than the Englishes. You have
to make a conscious decision, in such a case, to choose a language level (British
English, say, or MSA), write to it, check repeatedly that you have written to
it, and check with customers from various actual or potential markets that
they understand you. This problem is particularly acute when the wide spread
natural language is one like Swahili or Indonesian or English or Russian or
Spanish that is a second language for many of its speakers.

Once again: it would take a whole paper to inculcate the beginnings of skill
in developing internationalised software. These two lectures are only supposed
to make students aware that the problem exists and that something can be done
about it. But a maintenance project that involved internationalising some exist-
ing program (even something like the Portable C Compiler, which has recently
been revised for BSD) and then arabising it would be a very interesting thing
to try.

By the way, I found Australian lawyers using the minus/hyphen as their
decimal point. Presented with a bill for “58− 99” I couldn’t make them under-
stand why that meant they owed me money. This counts as another “locale”,
but there is no official locale for it. This raises another issue, which is that it
may be necessary to “localise” software below the level to which the operating
system is normally willing to go. Locale names typically mention country, lan-
guage, and character set. But Australian states have different public holidays.
And different professions may use different ways of indicating negative numbers.
Within my own culture, a debt of 100 dollars has been variously notated as -100,
(100), and 100 in red ink, which is why you used to be able to get typewriter
ribbons that were half black and half red. We still speak of a person or business
being “in the red”.

Unicode keeps on growing. Leaving aside surrogate codes, private use areas,
and code points classified as “noncharacter”, here are the increases for each
version. These figures are derived from DerivedAge.txt in the Unicode data
base, which does not provide information about Unicode 1.0.

1.1 27,577 characters
2.0 11,373 more
2.1 2 more
3.0 10,307 more
3.1 44,946 more
3.2 1,016 more
4.0 1,226 more
4.1 1,273 more
5.0 1,369 more
5.1 1,624 more
5.2 6,648 more
6.0 2,088 more
6.1 732 more
6.2 1 more
6.3 5 bidorectional controls
7.9 2,834 more
8.0 7,716 more
9.0 7,500 more
10.0 8,518 more

4

Unicode 5.2 had 50 versions of zero. TAG DIGIT ZERO doesn’t really count
as that’s for meta-data, not displayable digits. Only the characters labelled
"Nd" are ones you might want to use in reporting numbers normally. That still
leaves 41 different zeros, and no way in C to tell printf() which one to use. It
does seem that the %O modifier in strftime() might select the locale’s digits,
though.

0030;DIGIT ZERO;Nd
0660;ARABIC-INDIC DIGIT ZERO;Nd
06F0;EXTENDED ARABIC-INDIC DIGIT ZERO;Nd
07C0;NKO DIGIT ZERO;Nd
0966;DEVANAGARI DIGIT ZERO;Nd
09E6;BENGALI DIGIT ZERO;Nd
0A66;GURMUKHI DIGIT ZERO;Nd
0AE6;GUJARATI DIGIT ZERO;Nd
0B66;ORIYA DIGIT ZERO;Nd
0BE6;TAMIL DIGIT ZERO;Nd
0C66;TELUGU DIGIT ZERO;Nd
0C78;TELUGU FRACTION DIGIT ZERO FOR ODD POWERS OF FOUR;No
0CE6;KANNADA DIGIT ZERO;Nd
0D66;MALAYALAM DIGIT ZERO;Nd
0E50;THAI DIGIT ZERO;Nd
0ED0;LAO DIGIT ZERO;Nd
0F20;TIBETAN DIGIT ZERO;Nd
1040;MYANMAR DIGIT ZERO;Nd
1090;MYANMAR SHAN DIGIT ZERO;Nd
17E0;KHMER DIGIT ZERO;Nd
1810;MONGOLIAN DIGIT ZERO;Nd
1946;LIMBU DIGIT ZERO;Nd
19D0;NEW TAI LUE DIGIT ZERO;Nd
1A80;TAI THAM HORA DIGIT ZERO;Nd
1A90;TAI THAM THAM DIGIT ZERO;Nd
1B50;BALINESE DIGIT ZERO;Nd
1BB0;SUNDANESE DIGIT ZERO;Nd
1C40;LEPCHA DIGIT ZERO;Nd
1C50;OL CHIKI DIGIT ZERO;Nd
2070;SUPERSCRIPT ZERO;No
2080;SUBSCRIPT ZERO;No
24EA;CIRCLED DIGIT ZERO;No
24FF;NEGATIVE CIRCLED DIGIT ZERO;No
A620;VAI DIGIT ZERO;Nd;0;L;;0;0;0;N;;;;;
A8D0;SAURASHTRA DIGIT ZERO;Nd
A8E0;COMBINING DEVANAGARI DIGIT ZERO;Mn
A900;KAYAH LI DIGIT ZERO;Nd
A9D0;JAVANESE DIGIT ZERO;Nd
AA50;CHAM DIGIT ZERO;Nd;0
ABF0;MEETEI MAYEK DIGIT ZERO;Nd
FF10;FULLWIDTH DIGIT ZERO;Nd
104A0;OSMANYA DIGIT ZERO;Nd
1D7CE;MATHEMATICAL BOLD DIGIT ZERO;Nd

5

1D7D8;MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO;Nd
1D7E2;MATHEMATICAL SANS-SERIF DIGIT ZERO;Nd
1D7EC;MATHEMATICAL SANS-SERIF BOLD DIGIT ZERO;Nd
1D7F6;MATHEMATICAL MONOSPACE DIGIT ZERO;Nd
1F100;DIGIT ZERO FULL STOP;No
1F101;DIGIT ZERO COMMA;No
E0030;TAG DIGIT ZERO;Cf

The lost characters in English are ash (æ Æ), eth (ð Ð), thorn (þ Þ), yogh,
and wynn. Modern English has a pressing need for esh (

∫
Σ), eng, and either

eth or thorn. (“Þe cat sat on þe mat” — thorn. “Ðe cat sat on ðe mat” — eth.
“Σe sells sea-

∫
ells” — esh.)

6

