
COSC345 Week 8 Notes

Be careful what you wish for, you may get it.
For many years, “reuse” was the Great Hope of the software engineering

world. If only we could build our programs out of ready-built off-the-shelf
components, it would be so much easier to write programs. Brad Cox, the
inventor of the Objective C language that is used to good effect in Mac OS X
and iOS, coined the phrase “Software ICs”. At times it seemed as if everyone
was talking about components. There were in fact two hopes. One was that we
could make programs (and money) faster by using other people’s components
than by writing our own, and the other was that we could make money by
writing components for other people to use. Admittedly, this was always going
to be hard for languages like Fortran 77 (but not Fortran 95, still less Fortran
04), Pascal, C, and so on. But another great hope was the modular languages
(especially Ada) and object-oriented languages (like Eiffel) would save the day.

To a large extent this has come true.
If you are a Perl programmer, there is a vast library of things you can reuse

called CPAN, the Comprehensive Perl Archive Network, at www.cpan.org.
If you are a Tcl/Tk programmer, there is a web site (www.tcl.tk) where you

can start looking. Again, there is a great deal.
If you are a Python programmer, www.python.org is there for you, and

www.pythonware.org, and others.
If you are a Squeak Smalltalk programmer, there’s such a range of stuff you

can get that there is a special browser in the environment to help you find it.
If you are a Java programmer, you know how you are awash in JavaDoc, and

the Java Community Process is constantly coming up with new JSRs, some of
which turn into standard parts of Java (like Doug Lea’s multithreading extras)
and some of which are intended to be specifications for businesses to make
money by implementing. And of course you will know about all the cool stuff
at www.apache.org.

If you are a statistician, or anyone doing complex things with numerical
data and wanting to display the results, you really cannot go past R (www.r-
project.org). And there is a Comprehensive R Archive Network (click CRAN
in the navigation bar), with packages available for more kinds of analysis than
most expert statisticians have ever heard of. (Some of them are econometrics,
some of them are AI, some of them are bioinformatics, etc. In fact there’s
even the BioConductoR project at www.bioconductor.org which is dedicated to
bioinformatics with R.)

If you are writing in {AMS,}{La,}TeX, the Comprehensive TeX Archive
Network at www.ctan.org is for you.

If you are a Haskell programmer, the Hackage collection of library modules
at hackage.haskell.org currently has over 1000 packages for download (and most
packages have more than one module).

All of those examples are community systems built around an open source
project (Java used to be an exception, but is no longer). But then there’s
IBM’s Alphaworks site.

These days, your average operating system comes with a huge range of stuff
you can use. The official UNIX core has over 2000 named items you can use, not
including X11, and not including things like OpenSSL or OpenGL or libmkimod
(portable sound library) or libpng or ... Windows 5 had over 8000, and that’s

1



not including anything like the Microsoft Foundation Classes. As for Mac OS X,
there are frameworks piled upon frameworks. I haven’t even managed to find all
the free Mac OS X documentation yet, let alone read it. There’s even a toolkit
(Dashcode) for writing mini-applications (Dashboard widgets) in HTML + CSS
+ Javascript that ties in with WebKit. Linux has GNOME (with its Bonobo
component model) and KDE (with its KParts component model). Windows
has COM. Even entire applications can be treated as components: Word can
be extended by programming in Visual Basic for Applications on Windows (but
not on Mac OS X any more, although it used to work well) or by programming
in Applescript on Mac OS X (but not on Windows). But it can also be driven
from outside through a component interface, using a scripting language like
Applescript or Fscript on a Mac or Powershell on Windows.

To give you an example of where we’ve come with reusable software, if
I wanted a program that would take a picture every 10 minutes and send it
to another machine, these days it could probably be done in about a page of
Applescript driving Photo Booth to take the pictures and Mail to send them.
Think of the things you could do by combining existing software using tiny
amounts of scripting. (The people developing the Android software for mobile
phones have...)

We have entire frameworks developed to support component programming
and reuse. Visual Basic is nothing else but. The Wikipedia article http://
en.wikipedia.org/wiki/Third-party software component gives Visual Basic the
credit for creating the first real commercial market in third-party components.
(Most of the examples above relate to Open Source components or typically
come with the operating system.) JavaBeans is an attempt to do the same
thing for Java. OSGi is related. Of course one of the aims of the .NET Common
Language Runtime is to enable components written in any .NET language to
be used from any other .NET language, and it seems to be working.

A good overview of components can be found in the Wikipedia article http:/
/en.wikipedia.org/wiki/Software component#Software component

In short, we have reuse beyond our wildest dreams.
It used to be that the problem was that we didn’t have reuse. Now the

problem is that we do. This lecture tries to take a balanced look at reuse.
The first problem with reuse is that you have to find something to reuse.

That means that you have to push your design far enough to get a clear idea
of what you are looking for. In most cases, what you are looking for won’t be
exactly what you want. Either you will have to adapt the thing you’ve found
(perhaps by editing it, or perhaps by writing extra “glue” code around it), or
you will have to adapt your design.

This actually comes with three subproblems:
1. finding things in an overwhelming sea of documentation. This is an Infor-
mation Retrieval problem. You really want to put the available documentation
into an information retrieval system like Andrew Trotman’s atire, or Melbourne
University’s zettair, or Apache Lucene.
2. verifying that what you have found is what you are looking for. This means
you actually have to read the stuff. Well-structured documentation follows
the “inverted pyramid” style where the most important information is at the
front, less important information (such as limitations or dependencies) follows,
and actual interface details come last. http://www.ch-werner.de/javasqlite/ is a
nice example of JavaDoc written in this style. This style lets someone frantically

2



wading through a lake of documentation quickly eliminate false leads.
3. evaluating which of several alternatives looks most promising. At this point
you need interface details so that you can assess the likely cost of adaptation.

The second problem is that just because a “reusable” component exists, that
doesn’t mean it ever worked, still works in some environment, still works in your
environment, or can meet your performance requirements. You still have to do
your own tests. Reuse saves development time, but not that much testing time.

The slide “mechanisms for reuse” describes different ways you can reuse
something. Basically, it recapitulates the history of programming.

Reuse by linking refers to the 1950s technology of gluing a Fortran program
together out of separately compiled subprograms. It also refers to the ability
to load new classes into Java or C#. This is just using something without any
kind of adaptation.

Reuse via text editor refers to the “make a copy of something close to what
you want and change it” approach. You might think that this is hopelessly
old-fashioned, but whenever somebody finds an example on the Web, drops into
into Eclipse or Visual Studio, and starts hacking, that’s reuse via text editor. It
makes a lot of sense, except that you lose the link between the original version
and the revised version. UNIX programs like diff -c and patch try to help
here: if you have changed version A into version B, and someone else has fixed
bugs in version A to produce version C, then maybe (version B + (changes from
A to C)) will give you something close to a less buggy version B. Of course, if the
changes overlap, it may be hard to figure out what to do. The darcs distributed
version control system (see darcs.net/ ) is based on a “theory of patches”, which
may help here.

Reuse via macro processor is an attempt to make things that don’t need
to be edited, because likely sources of variation are already dealt with by pa-
rameters in a template which you instantiate using a macro processor. My
personal favourite macro processor is m4. I provide an example of reuse via
macro processor. Since Java 1.5, Java has had classes with type parameters, so
we can now talk about ArrayList<String> and ArrayList<Date> instead
of just ArrayList. However, it’s an essential property of Java that we cannot
possibly talk about ArrayList<int>, because int is not an object reference
type. What you have to do is to use ArrayList<Integer> and rely on Java’s
automatic boxing (converting an int to an Integer by allocating a box and
stuffing the int into it) and unboxing (converting an Integer to an int by
calling .intValue() on it) to provide the illusion of storing ints. Since Java
type parameters do not, in fact, eliminate the type casting operations we used to
need in Java 1.4, only hide them, the costs of using box types (like Integer) are
heavy. So I demonstrate a template “al.m4” which you can use to build things
that look exactly like ArrayList but are specialised to any type you want. The
performance boost is dramatic. And it cannot be had any other reasonable way.

Reuse via generics (Ada, Eiffel, and Java term)/templates (C++ term) is
basically about getting the compiler to do the template instantiation. (The
same idea is also present in ML, CAML, F#, Clean, Haskell, and Mercury, in a
somewhat different form.) The designer of a reusable software component has
to predict which aspects might vary and express those aspects as parameters,
which the compiler can then fill in. The great advantage here is that the compiler
understands the semantics of the language, which m4 does not. There is a
limitation: some things you can do with a macro processor cannot be done this

3



way.
Reuse via generator leads us into the area of Domain Specific Languages,

and the idea of getting a program generator to generate code in a low level
language like Java or C# from a higher level specification. There’s a paper on
applying aspect-oriented programming to sparse matrix algorithms that explains
this clearly. Some truly amazing things can be done this way. What is reused
here is not source code, but techniques for creating source code. When I’ve
had to write code with a repetitive structure, but not identical repetitions, I’ve
often used AWK to do it. Other people would use Perl or Python, it’s just that
I know AWK much better.

One important issue of course is that it’s not just source code that can be
reused. Architectures can be reused. There are plenty of good books about
software architecture. One that is easy to follow is the “gang of five” book
about design patterns. (Not the gang of four, the gang of “five”.) Designs can
be reused. Documentation can be reused. Forms can be reused. Even if tests
cannot be reused, perhaps test case generators can.

Reuse remains a worthy goal, but developing for reuse is harder than normal
development. The documentation for reusable components had better be really
good. Examples of reuse that can be imitated are especially important. It is
important to make reusable items findable otherwise they will not be reused.
(For example, one of the reasons that the programming language Clean never
became as popular as Haskell, which it greatly resembles, is thought to be the
fact that it is so hard to find using an internet search engine. I don’t really
buy that, since “Clean programming language” as a Google query puts the right
web site at the very top of the list of results. But it makes a nice cautionary
tale.)

Even though you got a component from someone else, it is still your re-
sponsibility to test the aspects of it that you use. Just because someone says
a component is correct or portable doesn’t mean it is, even if they charge you
money for it. As several groups found in 2013, a well-recommended component
may still have defects, and while it wasn’t their fault, it was still their problem,
either to fix the defects or to demonstrate that their code did not exercise the
defective parts. The company I worked for found out the hard way that it can
be more expensive to use a third-party component than to develop your own.

Think about it differently. Instead of thinking about reusing someone else’s
code, think about using their knowledge. For example, converting a string from
upper case to lower case is shockingly hard in Unicode. (The result is not
necessarily the same length as the input, and what the result should be depends
on the locale.) A good reason to use the International Components for Unicode
from IBM is not because of their (presumed) skill at coding but because of their
(presumed) understanding of the depths of Unicode weirdness.

Of course, if you don’t know enough to write a component, you may not
know enough to test it either. That’s OK, you may be able to find some test
cases to use!

4


