
COSC345 Week 10 Notes

Reverse and re-engineering are about software maintenance. One thing that
should be brought out in all of these lectures is that most programmer work is
maintenance, not green-field development. You’ll find various estimates around.
Use the most up to date one you can find, but 80% of development as mainte-
nance isn’t a bad figure.

This is one reason why it’s a good idea for the project for this paper to be a
maintenance one. Students don’t find maintenance as enjoyable as developing
their own pet projects, but neither do employed programmers.

Now when you actually come to do some maintenance, you find that everyone
who came before you was an illiterate fool. Nothing ever got written down that
you need to know, except for stuff that turns out not to be true. (My own
Smalltalk compiler is currently in that state. My original implementation ideas
are written down, but in the course of actually building the program almost
all of the original ideas were discarded. For example, I intended to implement
each Smalltalk block as a separate class. Now I don’t. I intended to implement
characters and Booleans as full objects. But then along came Unicode, and I
really wasn’t willing to tie up a million objects, so characters, booleans, and nil
are also immediate. I put a good deal of work into devising an efficient way to
refer to global variables, only to discover in 2010 that it not only didn’t pay off
on a PC, as I’d expected, but it didn’t pay off on the RISC it was originally
devised for. So the design notes are about as useful as the design notes for the
airship mooring tower for the top of the Empire State Building: that’s not what
got built!)

The basic idea is incredibly simple: before you can fix a program, you have
to know what it is supposed to do and how it does it. If the documentation
doesn’t tell you, you have to write the documentation that you wish you had
been given in the first place.

I give the students a personal anecdote. If you’ve had much experience,
you’ll have your own. Here’s mine.

I used to work at a company that made a compiler for a high level language.
Our system could be considered as made of
1. editor interface
2. parser
3. code generator
4. threaded code emulator for VM instructions
5. runtime system
6. library
7. documentation

One day one of the founders quit. A month or so later, we noticed that
there was a mistake in the code generator. I was given the task of fixing it.
In about 2000 lines of code, there were two comments. One was a copyright
notice, and the other was four lines of code commented out with a note “this
doesn’t work”. The procedures all had tolerably clear names, but all variables
were either one capital letter or one capital letter followed by one digit, although
the language allowed arbitrarily long names. This being a dynamically typed
language, there were no type or structure declarations. It turned out that the
code generator went through about 6 stages of rewriting, each with its own tree
structure. I spent about two weeks going through that code, documenting all

1

the data structures and giving all the variables more meaningful names (such
as Live Variables instead of L). As I went, I wrote pretty-printing and validity-
checking procedures for each data structure, so that I could check that I hadn’t
missed any cases (which of course I had, so it was a good thing the procedures
were there to find out and tell me), so by the end of that time I was in good shape
for making changes. This is very closely related to the stuff that Martin Fowler
talks about in his book on Refactoring; the checking and testing procedures are
related to test-driven development, which is touched on in that book. Once I
knew what the data structures were, I was able to improve them and make the
code simpler and easier to read. This actually speeded the compiler up by 25%.

There was one part of the compiler’s code generator I really could not un-
derstand. Something very clever was going on in there, but what? I knew what
it was for, and I knew how to tell if the output was correct, but I didn’t under-
stand the algorithm. Needless to say, that’s where the bug was. Having made
the compiler faster, I was now able to afford the time to run an extra pass after
the buggy bit to tell whether the bug had occurred or not, and if it had, to
repair the output. If there had been no other work to do, I’d have put a lot
more effort into understanding that part, but sometimes near enough is good
enough, and we never had any more trouble with that particular bug.

The really annoying thing here is that the original author knew what was
supposed to be going on, he just didn’t bother writing down, because it was
always going to be him working on it. Except it wasn’t.

One lesson from this is that internal documentation doesn’t have to be big
to be helpful. It could just be a matter of using intention-revealing names.

Martin Fowler’s “Refactoring” book really has a small number of key ideas,
and they are very important.
1. Before you can make the changes you really want to make (adding a feature
or improving performance or fixing a mistake or whatever) you very often have
to tidy up messy code. This tidying up is called refactoring.
2. Any kind of change, even refactoring changes, is risky. As a rough guide,
even for good programmers, by the time a program gets to one million lines
of code, any time you fix a bug you are likely to introduce at least one more.
(Hercules and the Hydra.)
3. So you really need good test cases for the code you are working on and
you want to run them after each change to make sure that you haven’t broken
anything.
4. This makes each change slower, because running the tests takes time, but it
makes the change process faster, because your mistakes get caught much sooner
and are easier to undo.

What I’m saying here is that developing test cases can be a good way to
develop your understanding of the code you are working on, and once developed,
they can be a good way of recording that understanding.

One specific form of reverse engineering is trying to reconstruct the source
code from the object code. You can certainly reconstruct assembly code from
the object code. It won’t be the assembly code that was originally used, but it
will be assembly code that would have resulted in the object code you have. I
once saw a COBOL program that was produced this way: there was an object
program of some economic value on machine X, which was now dead. A disas-
sembler reconstructed assembly code. Another program turned that assembly
code into COBOL. The result wasn’t really readable, but it could be compiled

2

and executed on the new machine, which was more than the old object code
could.

At some point you might want to mention Canterbury Pascal as an example
of dealing with legacy software. Canterbury Pascal is now available from http:/
/www.mhccorp.com/mhcform.shtml (it’s a commercial product, not free, but
it’s pretty cheap). There are two versions. The US$56 one compiles Pascal to
JVM .class files. The US$112 version compiles Pascal to Java.

Disassembling stuff you don’t own rights to is illegal in many countries. I
know this is in the slides but it bears repeating. There is nothing wrong with
with disassembling open source software or software that you own, but make
very sure you really do own it. There was a project I was involved with in
Australia, where the aim was to develop a completely new system from the
documentation for the old. We weren’t even going to be in the same city as
any copy of the original program. However, the large American company that
produced it said “we own all the ideas, we will sue if you do this.” You can
understand their point: they were charging AUD two million for each change.
Their position was legal but highly immoral. Needless to say, the project was
cancelled. How the Australian government failed to end up owning something
they had paid a very large amount of money for is an interesting question, but
not really a software engineering one. The New Zealand government deliberately
sought not to have the intellectual property for Novopay. Go figure! And
then Talent2 decided they couldn’t commit to maintaining Novopay, so the
government had to buy the IP rights or they wouldn’t have been able to fix it!

Dealing with legacy code can be a problem because not only may it be hard
to find documentation for the program, it may be hard to find accurate docu-
mentation for the programming language or the operating system. If someone
gave you a program written for MS-DOS 2.0 in Microsoft Fortran, would you
be sure what it did and how it did it? Where would you get manuals? Some-
times the manuals are not accurate. CWI in the Netherlands have done a lot
of work with programming language description tools called ASF+SDF. See
http://www.asfsdf.org/ In related work, someone or other (I cannot locate the
paper because we moved buildings and a lot of stuff is still in boxes, it may
well have been the Amsterdam group) did things like automatically extracting
grammars from IBM manuals, and found that they were seriously buggy. Actu-
ally reconstructing a working grammar for old COBOL was surprisingly hard.
But it had to be done before they could analyse the old code.

A lot of “legacy” code exists and does need to be maintained. Modern For-
tran contains a very pleasant “structured” programming language with records
and pointers and recursion and modules and vectorised operations and all the
stuff you’d want — the latest version even has objects — but a lot of old code
doesn’t use that stuff. Here is some Fortran 77 code, from which I have stripped
the comments.

REAL FUNCTION GAU(Z)

REAL P, PI, X

X = ABS(Z)

IF (X .GT. 5.5) GO TO 10

P = EXP(-((83.0 * X + 351.0) * X + 562.0) * X /

1 (703.0 + 165.0 * X))

3

GO TO 20

10 PI = 4.0 * ATAN(1.0)

P = SQRT(2.0/PI) * EXP(-(X * X/2.0 +

1 0.94/(X * X))) / X

20 GAU = P/2.0

IF (Z .GT. 0.0) GAU = 1.0 - GAU

RETURN

END

Here’s the same thing in Fortran 95.

real function gau(z)

real, intent(in) :: z

real, parameter :: pi = 4.0*atan(1.0)

real :: p, x

x = abs(z)

if (x <= 5.5) then

p = exp(-((83.0*x + 351.0)*x + 562.0)*x/(165.0*x + 703.0))

else

p = sqrt(2.0/pi) * exp(-(x*x/2.0 + 0.94/(x*x))) / x

end if

if (z > 0.0) then

gau = 1.0 - p/2.0

else

gau = p/2.0

end if

end

You don’t need to know much Fortran to find this much more readable.
What would it be like to convert from the old form to the new form automat-
ically? That’s (one kind of) dialect conversion. C and C++ are not, despite
uninformed claims, compatible; the C++ standard lists page after page after
page of incompatibilities with C, starting with the obvious (sizeof ’x’ is 1 in
C++ but could be 2, 4, or even 8 in C) and proceeding through quite surprising
things. How if we could automatically convert from C to C++? I have some
old C++ code that C++ compilers no longer accept; I’d rather like to run it,
but it isn’t worth the effort to rewrite thousands of lines by hand, especially
as I don’t have C++ documentation of that vintage. How if we could convert
automatically?

Why would we convert? Because the old language isn’t available any more
(on the Macintosh we lost first Think Pascal, then MR Pascal, then Metrowerks
Pascal) or because we want to maintain the code using new tools that only deal
with a modern dialect, or simply because it’s much more maintainable in the
new dialect.

Another personal anecdote: I once wrote a dialect converter from IBM Prolog
to Quintus Prolog. It wasn’t possible to do a perfect job, but it was quite
enough to make a key customer happy. It fully preserved all comments, and
even put them in reasonable places. Some people will tell you that dialect
converters/language translators lose comments. They are wrong. (The current
user-land Haskell parsing kit from Hackage can preserve comments well enough
to be useful.)

4

It’s important to remember that reverse engineering (working backwards
from products of the forward engineering process to their inputs, like require-
ments, specifications, documentation, test cases, etc) and any kind of refactor-
ing, these things are only means to an end, and that end is re- engineering:
moving forwards to a better state of affairs. There is no point in doing this un-
less the old code still has economic value, and unless all this effort will enhance
this value.

According to a 2009 survey commissioned by Micro Focus and conducted by
Harris Interactive:
1. 70–75% of the business and transaction systems around the world run
on COBOL. This includes credit card systems, ATMs, ticket purchasing, re-
tail/POS systems, banking, payroll systems, telephone/cell calls, grocery stores,
hospital systems, government systems, airline systems, insurance systems, au-
tomotive systems, traffic signal systems.
2. 90% of global financial transactions are processed in COBOL.
3. The language supports over 3 × 1010 transactions per day.
4. The average American still interacts with a COBOL program 13 times a day.
5. There are 1.5–2 million developers, globally, working with COBOL code.
6. There are around 2 × 1011 lines of COBOL code in use.
7. Around 5 × 109 lines of new COBOL code are added to live systems every
year.
8. The investment made into COBOL systems over the past 50 years is said to
be worth about USD 2 × 1012.

Think about all the COBOL’85 code that needs to be updated to COBOL’02.
Wipe the drool off your chin. Think about the companies wanting to convert
COBOL to Java. Wipe it off, I say! Think about the missing documentation
from 20-year-old software. I said, wipe it off. Think about 40 million lines of
code running the New Zealand tax system. Oops!

For working with source code, you can’t go past the Rascal http://www.rascal-
mpl.org/ project from CWI or the older Meta-Environment http://www.meta-
environment.org/ that preceded it. For working with object code, there are
a number of older systems, notably the Executable Editing Library http://
pages.cs.wisc.edu/∼larus/eel.html by Larus et al. There is a newer system called
the University of Queensland Binary Translator http://www.itee.uq.edu.au/
∼cristina/uqbt.html. That can convert binary code from one architecture to
another, possibly an earlier or later version of the same machine, possibly quite
a different one. Figuring out switch() statements was surprisingly tricky.

For an example of emulators, you might like to look at Andrew Trotman’s
Poly Preservation Project http://www.cs.otago.ac.nz/homepages/andrew/poly/
Poly.htm where you will find an emulator for the Poly computer.

For another example, Apple Macintoshes used to use a CPU called the Mo-
torola 68000. Other companies did too: I used to have an Atari 520ST running
an operating system called TOS with gui kit GEM. There is now an emulator
called ARAnyM (aranym.org) which emulates Atari ST, TT, and Falcon ma-
chines running TOS, FreeMiNT, MagiC, and Linux-m68k on modern machines,
so old software written for those machines can still function.

Disassemblers: your system may have one called ’dis’ or ’disas’ or ’ndis-
asm’. For Java, there’s ’javap’, which can tell you quite a lot about JVM
code you don’t have sources for. You really should demonstrate ’javap’ in

5

class. The Java Decompiler ’JD’ at http://java.decompiler.free.fr is pretty im-
pressive, actually. There is a program called HT which can handle x86 binaries
and I believe Java class files; target platforms are Linux, *BSD, and Windows.
See http://hte.sourceforge.net/.

6

