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Abstract—This paper summarizes the current state of the art and recent trends in 
software engineering economics. It provides an overview of economic analysis 
techniques and their applicability to software engineering and management. It 
surveys the field of software cost estimation, including the major estimation 
techniques available, the state of the art in algorithmic cost models, and the 
outstanding research issues in software cost estimation. 
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I. INTRODUCTION 
 
Definitions 
 

The dictionary defines “economics” as “a social science concerned chiefly 
with description and analysis of the production, distribution, and consumption of 
goods and services.” Here is another definition of economics that I think is more 
helpful in explaining how economics relates to software engineering. 
 

Economics is the study of how people make decisions in resource-limited 
situations. This definition of economics fits the major branches of classical 
economics very well. 
 

Macroeconomics is the study of how people make decisions in resource-
limited situations on a national or global scale. It deals with the effects of decisions 
that national leaders make on such issues as tax rates, interest rates, and foreign and 
trade policy. 

 
Microeconomics is the study of how people make decisions in resource-

limited situations on a more personal scale. It deals with the decisions that 
individuals and organizations make on such issues as how much insurance to buy, 
which word processor to buy, or what prices to charge for their products or 
services. 
 
Economics and Software Engineering Management 
 

If we look at the discipline of software engineering, we see that the 
microeconomics branch of economics deals more with the types of decisions we 



need to make as software engineers or managers. 
 

Clearly, we deal with limited resources. There is never enough time or 
money to cover all the good features we would like to put into our software 
products. And even in these days of cheap hardware and virtual memory, our more 
significant software products must always operate within a world of limited 
computer power and main memory. If you have been in the software engineering 
field for any length of time, I am sure you can think of a number of decision 
situations in which you had to determine some key software product feature as a 
function of some limiting critical resource. 
 

Throughout the software life cycle,1 there are many decision situations 
involving limit-ed resources in which software engineering economics techniques 
provide useful assistance. To provide a feel for the nature of these economic 
decision issues, an example is given below for each of the major phases in the 
software life cycle. 
 

• Feasibility Phase. How much should we invest in information system 
analyses (user questionnaires and interviews, current-system analysis, 
workload characterizations, simulations, scenarios, prototypes) in order 
to converge on an appropriate definition and concept of operation for 
the system we plan to implement? 

• Plans and Requirements Phase. How rigorously should we specify 
requirements? How much should we invest in requirements validation 
activities (automated completeness, consistency, and traceability 
checks, analytic models, simulations, prototypes) before proceeding to 
design and develop a software system? 

• Product Design Phase. Should we organize the software to make it 
possible to use a complex piece of existing software that generally but 
not completely meets our requirements? 

• Programming Phase. Given a choice between three data storage and 
retrieval schemes that are primarily execution-time efficient, storage 
efficient, and easy to modify, respectively, which of these should we 
choose to implement? 

• Integration and Test Phase. How much testing and formal verification 
should we perform on a product before releasing it to users? 

• Maintenance Phase. Given an extensive list of suggested product 
improvements, which ones should we implement first? 

• Phaseout. Given an aging, hard-to-modify software product, should we 
replace it with a new product, restructure it, or leave it alone? 

                                                 
1 Economic principles underlie the overall structure of the software life cycle, and 
its primary refinements of prototyping, incremental development, and 
advancemanship. The primary economic driver of the life-cycle structure is the 
significantly increasing cost of making a software change or fixing a software 
problem, as a function of the phase in which the change or fix is made. See [11, ch. 
4]. 



 
 
Outline of This Paper 
 

The economics field has evolved a number of techniques (cost—benefit 
analysis, present-value analysis, risk analysis, etc.) for dealing with decision issues 
such as the ones above. Section II of this paper provides an overview of these 
techniques and their applicability to software engineering. 

 
One critical problem that underlies all applications of economic techniques 

to software engineering is the problem of estimating software costs. Section III 
contains three major subsections that summarize this field: 
 

III-A: Major Software Cost Estimation Techniques 
III-B: Algorithmic Models for Software Cost Estimation 
III-C: Outstanding Research Issues in Software Cost Estimation. 
 
Section IV concludes by summarizing the major benefits of software 

engineering economics, and commenting on the major challenges awaiting the 
field. 

 
 
II. SOFTWARE ENGINEERING ECONOMICS ANALYSIS TECHNIQUES 
 
Overview of Relevant Techniques 
 

The microeconomics field provides a number of techniques for dealing with 
software life-cycle decision issues such as the ones given in the previous section. 
Fig. 1 presents an overall master key to these techniques and when to use them.2
 

                                                 
2 The chapter numbers in Fig. 1 refer to the chapters in [11], in which those techniques are discussed 
in further detail. 



MASTER KEY 
TO SOFTWARE ENGINEERING ECONOMICS 

DECISION ANALYSIS TECHNIQUES 

 
 

Fig. 1. Master key to software engineering economics decision analysis techniques. 
 

As indicated in Fig. 1, standard optimization techniques can be used when 
we can find a single quantity such as dollars (or pounds, yen, cruzeiros, etc.) to 
serve as a “universal solvent” into which all of our decision variables can be 
converted. Or, if the non-dollar objectives can be expressed as constraints (system 
availability must be at least 98 percent ; throughput must be at least 150 



transactions per second), then standard constrained optimization techniques can be 
used. And if cash flows occur at different times, then present-value techniques can 
be used to normalize them to a common point in time. 
 

More frequently, some of the resulting benefits from the software system 
are not expressible in dollars. In such situations, one alternative solution will not 
necessarily dominate another solution. 
 

An example situation is shown in Fig. 2, which compares the cost and 
benefits (here, in terms of throughput in transactions per second) of two alternative 
approaches to developing an operating system for a transaction processing system: 
 

• Option A. Accept an available operating system. This will require only 
$80K in software costs, but will achieve a peak performance of 120 
transactions per second, using five $10K minicomputer processors, 
because of a high multiprocessor over-head factor. 

• Option B. Build a new operating system. This system would be more 
efficient and would support a higher peak throughput, but would require 
$ 80K in software costs. 

 

 
Fig. 2. Cost-effectiveness comparison, transaction processing system options. 

 
The cost-versus-performance curves for these two options are shown in Fig. 

2. Here, neither option dominates the other, and various cost-benefit decision-
making techniques (maximum profit margin, cost/benefit ratio, return on 
investments, etc.) must be used to choose between Options A and B. 



 
In general, software engineering decision problems are even more complex 

than shown in Fig. 2, as Options A and B will have several important criteria on 
which they differ (e.g. , robustness, ease of tuning, ease of change, functional 
capability). If these criteria are quantifiable, then some type of figure of merit can 
be defined to support a comparative analysis of the preferability of one option over 
another. If some of the criteria are unquantifiable (user goodwill, programmer 
morale, etc.), then some techniques for corn-paring unquantifiable criteria must be 
used. As indicated in Fig. 1, techniques for each of these situations are available, 
and are discussed in [11]. 
 
 
Analyzing Risk, Uncertainty, and the Value of Information 
 

In software engineering, our decision issues are generally even more 
complex than those discussed above. This is because the outcome of many of our 
options cannot be deter-mined in advance. For example, building an operating 
system with a significantly lower multiprocessor overhead may be achievable but, 
on the other hand, it may not. In such circumstances, we are faced with a problem 
of decision making under uncertainty, with a considerable risk of an undesired 
outcome. 

 
The main economic analysis techniques available to support us in resolving 

such problems are the following. 
 

1 ) Techniques for decision making under complete uncertainty, such as 
the maximax rule, the maximin rule, and the Laplace rule [38]. These techniques 
are generally inadequate for practical software engineering decisions. 

 
2) Expected-value techniques, in which we estimate the probabilities of 

occurrence of each outcome (successful or unsuccessful development of the new 
operating system) and complete the expected payoff of each option: 
 

EV = Prob(success) * Payoff(successful OS) 
        + Prob(failure) * Payoff(unsuccessful OS). 

 
These techniques are better than decision making under complete uncertainty, but 
they still involve a great deal of risk if the Prob(failure) is considerably higher than 
our estimate of it. 
 

3) Techniques in which we reduce uncertainty by buying information. 
For example, prototyping is a way of buying information to reduce our uncertainty 
about the likely success or failure of a multiprocessor operating system; by 
developing a rapid prototype of its high-risk elements, we can get a clearer picture 
of our likelihood of successfully developing the full operating system. 
 



In general, prototyping and other options for buying information3 are most 
valuable aids for software engineering decisions. However, they always raise the 
following question: “how much information buying is enough?” 
 

In principle, this question can be answered via statistical decision theory 
techniques involving the use of Bayes’ Law, which allows us to calculate the 
expected payoff from a software project as a function of our level of investment in 
a prototype or other information-buying option. (Some examples of the use of 
Bayes’ Law to estimate the appropriate level of investment in a prototype are given 
in [11, ch. 20].) 
 

In practice, the use of Bayes’ Law involves the estimation of a number of 
conditional probabilities that are not easy to estimate accurately. However, the 
Bayes’ Law approach can be translated into a number of value-of-information 
guidelines, or conditions under which it makes good sense to decide on investing in 
more information before committing ourselves to a particular course of action: 
 

Condition 1: There exist attractive alternatives whose payoffvaries greatly, 
depending on some critical states of nature. If not, we can commit ourselves to one 
of the attractive alternatives with no risk of significant loss. 
 

Condition 2: The critical states of nature have an appreciable probability of 
occurring. If not, we can again commit ourselves without major risk. For situations 
with extremely high variations in payoff, the appreciable probability level is lower 
than in situations with smaller variations in payoff. 
 

Condition 3: The investigations have a high probability of accurately 
identifying the occurrence of the critical states of nature. If not, the investigations 
will not do much to reduce our risk of loss due to making the wrong decision. 
 

Condition 4: The required cost and schedule of the investigations do not 
overly curtail their net value. It does us little good to obtain results that cost more 
than they can save us, or which arrive too late to help us make a decision. 
 

Condition 5: There exist significant side benefits derived from performing 
the investigations. Again, we may be able to justify an investigation solely on the 
basis of its value in training, team building, customer relations, or design 
validation. 
 
 
Some Pitfalls Avoided by Using the Value-of-Information Approach 
 

The guideline conditions provided by the value-of-information approach 
provide us with a perspective that helps us avoid some serious software 
                                                 
3 Other examples of options for buying information to support software engineering decisions 
include feasibility studies, user surveys, simulation, testing, and mathematical program verification 
techniques. 



engineering pitfalls. The pitfalls below are expressed in terms of some frequently 
expressed but faulty pieces of software engineering advice. 
 

Pitfall 1: Always use a simulation to investigate the feasibility of complex 
real-time software. Simulations are often extremely valuable in such situations. 
However, there have been a good many simulations developed that were largely an 
expensive waste of effort, frequently under conditions that would have been picked 
up by the guidelines above. Some have been relatively useless because, once they 
were built, nobody could tell whether a given set of inputs was realistic or not 
(picked up by Condition 3). Some have been taken so long to develop that they 
produced their first results the week after the proposal was sent out, or after the key 
design review was completed (picked up by Condition 4). 
 

Pitfall 2: Always build the software twice. The guidelines indicate that the 
prototype (or build-it-twice) approach is often valuable, but not in all situations. 
Some prototypes have been built of software whose aspects were all 
straightforward and familiar, in which case nothing much was learned by building 
them (picked up by Conditions 1 and 2). 

 
Pitfall 3: Build the software purely top-down. When interpreted too 

literally, the top-down approach does not concern itself with the design of low-
level modules until the higher levels have been fully developed. If an adverse state 
of nature makes such a low-level module (automatically forecast sales volume, 
automatically discriminate one type of aircraft from another) impossible to 
develop, the subsequent redesign will generally require the expensive rework of 
much of the higher-level design and code. Conditions 1 and 2 warn us to temper 
our top-down approach with a thorough top-to-bottom software risk analysis during 
the requirements and product design phases. 
 

Pitfall 4. Every piece of code should be proved correct. Correctness proving 
is still an expensive way to get information on the fault-freedom of software, 
although it strongly satisfies Condition 3 by giving a very high assurance of a 
program’s correctness. Conditions 1 and 2 recommend that proof techniques be 
used in situations in which the operational cost of a software fault is very large, that 
is, loss of life, compromised national security, or major financial losses. But if the 
operational cost of a software fault is small, the added information on fault freedom 
provided by the proof will not be worth the investment (Condition 4). 

 
Pitfall 5. Nominal-case testing is sufficient. This pitfall is just the opposite 

of Pitfall 4. If the operational cost of potential software faults is large, it is highly 
imprudent not to perform off-nominal testing. 
 
 
Summary: The Economic Value of Information 
 

Let us step back a bit from these guidelines and pitfalls. Put simply, we are 
saying that, as software engineers: 



 
“It is often worth paying for information because it helps us make 

better decisions.” 
 
If we look at the statement in a broader context, we can see that it is the 

primary reason why the software engineering field exists. It is what practically all 
of our software customers say when they decide to acquire one of our products: 
that it is worth paying for a management information system, a weather forecasting 
system. an air traffic control system, or an inventory control system, because it 
helps them make better decisions. 

 
Usually, software engineers are producers of management information to 

be consumed by other people, but during the software life cycle we must also be 
consumers of management information to support our own decisions. As we come 
to appreciate the factors that make it attractive for us to pay for processed 
information that helps us make better decisions as software engineers, we will get a 
better appreciation for what our customers and users are looking for in the 
information processing systems we develop for them. 
 
 

III. SOFTWARE COST ESTIMATION 
 
Introduction 
 

All of the software engineering economics decision analysis techniques 
discussed above are only as good as the input data we can provide for them. For 
software decisions, the most critical and difficult of these inputs to provide are 
estimates of the cost of a proposed software project. In this section, we will 
summarize: 

 
1) the major software cost estimation techniques available, and their relative 

strengths and difficulties; 
 
2) algorithmic models for software cost estimation; 
 
3) outstanding research issues in software cost estimation. 

 
 
A. Major Software Cost Estimation Techniques 
 

Table I summarizes the relative strengths and difficulties of the major 
software cost estimation methods in use today: 



 
TABLE I 

STRENGTHS AND WEAKNESSES OF SOFTWARE COST-ESTIMATION METHODS 
Method Strengths Weaknesses 

Algorithmic 
model 

• Objective, repeatable, 
analyzable formula 

• Efficient, good for sensitivity 
analysis 

• Objectivity calibrated to 
experience 

• Subjective inputs 
• Assessment of exceptional 

circumstances 
• Calibrated to past, not 

future 

Expert 
judgment 

• Assessment of 
representativeness, 
interactions, exceptional 
circumstances 

• No better than participants 
• Biases, incomplete recall 

Analogy • Based on representative 
experience 

• Representativeness of 
experience 

Parkinson • Correlates with some 
experience 

• Reinforces poor practice 

Price to win • Often gets the contract • Generally produces large 
overruns 

Top-down • System-level focus 
• Efficient 

• Less detailed basis 
• Less stable 

Bottom-up • More detailed basis 
• More stable 
• Fosters individual 

commitment 

• May overlook system-level 
costs 

• Requires more effort 

 
1) Algorithmic Models: These methods provide one or more algorithms 

that produce a software cost estimate as a function of a number of variables that are 
considered to be the major cost drivers. 

 
2) Expert Judgment: This method involves consulting one or more 

experts, perhaps with the aid of an expert-consensus mechanism such as the Delphi 
technique. 
 

3) Analogy: This method involves reasoning by analogy with one or 
more completed projects to relate their actual costs to an estimate of the cost of a 
similar new project. 

 
4) Parkinson: A Parkinson principle (“work expands to fill the 

available volume”) is invoked to equate the cost estimate to the available resources. 
 
5) Price-to-Win: Here, the cost estimate is equated to the price 

believed necessary to win the job (or the schedule believed necessary to be first in 
the market with a new product, etc.). 

 



6) Top-Down: An overall cost estimate for the project is derived from 
global properties of the software product. The total cost is then split up among the 
various components. 

 
7) Bottom-Up: Each component of the software job is separately 

estimated, and the results aggregated to produce an estimate for the overall job. 
 
The main conclusions that we can draw from Table I are the following: 

 
• None of the alternatives is better than the others from all aspects. 
• The Parkinson and price-to-win methods are unacceptable and do not 

produce satisfactory cost estimates. 
• The strengths and weaknesses of the other techniques are 

complementary (particularly the algorithmic models versus expert 
judgment and top-down versus bottom-up). 

• Thus, in practice, we should use combinations of the above techniques, 
compare their results, and iterate on them where they differ. 

 
 

Fundamental Limitations of Software Cost Estimation Techniques 
 

Whatever the strengths of a software cost estimation technique, there is 
really no way we can expect the technique to compensate for our lack of definition 
or understanding of the software job to be done. Until a software specification is 
fully defined, it actually represents a range of software products, and a 
corresponding range of software development costs. 
 

This fundamental limitation of software cost estimation technology is 
illustrated in Fig. 3, which shows the accuracy within which software cost 
estimates can be made, as a function of the software life-cycle phase (the horizontal 
axis), or of the level of knowledge we have of what the software is intended to do. 
This level of uncertainty is illustrated in Fig. 3 with respect to a human-machine 
interface component of the software. 
 



 
Fig. 3. Software cost estimation accuracy versus phase. 

 
When we first begin to evaluate alternative concepts for a new software 

application, the relative range of our software cost estimates is roughly a factor of 
four on either the high or low side.4 This range stems from the wide range of 
uncertainty we have at this time about the actual nature of the product. For the 
human—machine interface component, for example, we do not know at this time 
what classes of people (clerks, computer specialists, middle managers, etc.) or what 
classes of data (raw or pre-edited, numerical or text, digital or analog) the system 
will have to support. Until we pin down such uncertain-ties, a factor of four in 
either direction is not surprising as a range of estimates. 
 

The above uncertainties are indeed pinned down once we complete the 
feasibility phase and settle on a particular concept of operation. At this stage, the 
range of our estimates diminishes to a factor of two in either direction. This range 
is reasonable because we still have not pinned down such issues as the specific 
types of user queries to be supported, or the specific functions to be performed 
within the microprocessor in the intelligent terminal. These issues will be resolved 
by the time we have developed a software requirements specification, at which 
point we will be able to estimate the software costs within a factor of 1.5 in either 
direction. 
 
                                                 
4 These ranges have been determined subjectively, and are intended to represent 80 percent  
confidence limits, that is, “within a factor of four on either side, 80 percent  of the time.” 



By the time we complete and validate a product design specification, we 
will have resolved such issues as the internal data structure of the software product 
and the specific techniques for handling the buffers between the terminal 
microprocessor and the central processors on one side, and between the 
microprocessor and the display driver on the other. At this point, our software 
estimate should be accurate to within a factor of 1.25, the discrepancies being 
caused by some remaining sources of uncertainty such as the specific algorithms to 
be used for task scheduling, error handling, abort processing, and the like. These 
will be resolved by the end of the detailed design phase, but there will still be a 
residual uncertainty about 10 percent based on how well the programmers really 
understand the specifications to which they are to code. (This factor also includes 
such consideration as personnel turnover uncertainties during the development and 
test phases.) 
 
 
B. Algorithmic Models for Software Cost Estimation 
 
Algorithmic Cost Models: Early Development 
 

Since the earliest days of the software field, people have been trying to 
develop algorithmic models to estimate software costs. The earliest attempts were 
simple rules of thumb, such as: 
 

• on a large project, each software performer will provide an average of 
one checked-out instruction per man-hour (or roughly 1 50 instructions 
per man-month); 

• each software maintenance person can maintain four boxes of cards (a 
box of cards held 2000 cards, or roughly 2000 instructions in those days 
of few comment cards). 

 
Somewhat later, some projects began collecting quantitative data on the 

effort involved in developing a software product, and its distribution across the 
software life cycle. One of the earliest of these analyses was documented in 1956 in 
[8]. It indicated that, for very large operational software products on the order of 
100,000 delivered source instructions (100 KDSI), that the overall productivity was 
more like 64 DSI/man-month, that another 100 KDSI of support software would be 
required, that about 15,000 pages of documentation would be produced and 3000 
hours of computer time consumed, and that the distribution of effort would be as 
follows: 
 
 Program Specs: 10 percent 
 Coding Specs:  30 percent 
 Coding:  10 percent 
 Parameter Testing: 20 percent 
 Assembly Testing: 30 percent 
 
with an additional 30 percent  required to produce operational specs for the system. 



Unfortunately, such data did not become well known, and many subsequent 
software projects went through a painful process of rediscovering them. 
 

During the late 1950’s and early l960’s, relatively little progress was made 
in software cost estimation, while the frequency and magnitude of software cost 
overruns was becoming critical to many large systems employing computers. In 
1964, the U.S. Air Force contracted with System Development Corporation for a 
landmark project in the software cost estimation field. This project collected 104 
attributes of 169 software projects and treated them to extensive statistical analysis. 
One result was the 1965 SDC cost model [41] which was the best possible 
statistical 13-parameter linear estimation model for the sample data: 
 

MM = -33.63 
+9. 1 5 (Lack of Requirements) (0-2) 
+ 10.73 (Stability of Design) (0-3) 
+0.51 (Percent Math Instructions) 
+0.46 (Percent Storage/Retrieval Instructions) 
+0.40 (Number of Subprograms) 
+7.28 (Programming Language) (0-1) 
-21.45 (Business Application) (0-1) 
+13.53 (Stand-Alone Program) (0-1) 
+12.35 (First Program on Computer) (0-1) 
+58.82 (Concurrent Hardware Development) (0-1) 
+30.61 (Random Access Device Used) (0-1) 
+29.55 (Difference Host, Target Hardware) (0-1) 
+0.54 (Number of Personnel Trips) 
-25.20 (Developed by Military Organization) (0-1). 

 
The numbers in parentheses refer to ratings to be made by the estimator. 
 

When applied to its database of 169 projects, this model produced a mean 
estimate of 40 MM and a standard deviation of 62 MM; not a very accurate 
predictor. Further, the application of the model is counterintuitive; a project with 
all zero ratings is estimated at minus 33 MM; changing language from a higher-
order language to assembly language adds 7 MM, independent of project size. The 
most conclusive result from the SDC study was that there were too many nonlinear 
aspects of software development for a linear cost-estimation model to work very 
well. 

 
Still, the SDC effort provided a valuable base of information and insight for 

cost estimation and future models. Its cumulative distribution of productivity for 
169 projects was a valuable aid for producing or checking cost estimates. The 
estimation rules of thumb for various phases and activities have been very helpful, 
and the data have been a major foundation for some subsequent cost models. 
 

In the late 1960’s and early 1970’s, a number of cost models were 
developed that worked reasonably well for a certain restricted range of projects to 



which they were calibrated. Some of the more notable examples of such models are 
those described in [3], [54], [57]. 

 
The essence of the TRW Wolverton model [57] is shown in Fig. 4, which 

shows a number of curves of software cost per object instruction as a function of 
relative degree of difficulty (0 to 100), novelty of the application (new or old), and 
type of project. The best use of the model involves breaking the software into 
components and estimating their cost individually. This, a 1000 object-instruction 
module of new data management software of medium (50 percent) difficulty would 
be costed at $46/instruction, or $46,000. 
 



 
Fig. 4. TRW Wolverton model. Cost per object instruction versus relative degree of 

difficulty. 
 

This model is well calibrated to a class of near-real-time government 
command and control projects, but is less accurate for some other classes of 
projects. In addition, the model provides a good breakdown of project effort by 
phase and activity. 
 



In the late 1970’s, several software cost estimation models were developed 
that established a significant advance in the state of the art. These included the 
Putnam SLIM Mod-el [44], the Doty Model [27], the RCA PRICE S model [22], 
the COCOMO model [11], the IBM-FSD model [53], the Boeing model [9], and a 
series of models developed by GRC [15]. A summary of these models, and the 
earlier SDC and Wolverton models, is shown in Table II, in terms of the size, 
program, computer, personnel, and project attributes used by each model to 
determine software costs. The first four of these models are discussed below. 
 

TABLE II 
FACTORS USED IN VARIOUS COST MODELS 
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SIZE SOURCE INSTRUCTIONS   X X  X X  X X X X 
   ATTRIBUTES OBJECT INSTRUCTIONS X X  X X        
 NUMBER OF ROUTINES X    X     X   
 NUMBER OF DATA ITEMS      X   X X   
 NUMBER OF OUTPUT FORMATS        X   X  
 DOCUMENTATION    X  X    X  X 
 NUMBER OF PERSONNEL   X   X X   X  X 
PROGRAM TYPE X X X X X X X   X   
   ATTRIBUTES COMPLEXITY  X X  X X   X X X X 
 LANGUAGE X  X    X X  X X  
 REUSE   X  X  X X X X X  
 REQUIRED RELIABILITY   X  X    X X  X 
 DISPLAY REQUIREMENTS    X      X  X 
COMPUTER TIME CONSTRAINT  X X X X X X X X X X X 
   ATTRIBUTES STORAGE CONSTRAINT   X X X X  X X X X X 
 HARDWIRE CONFIGURATION X    X        

 CONCURRENT HARDWARE 
CONFIGURATION X   X X X   X X X X 

 INTERFACING EQUIPMENT, S/W          X X  
PERSONNEL PERSONNEL CAPABILITY   X  X X   X X X X 
   ATTRIBUTES PERSONNEL CONTINUITY      X     X  
 HARDWARE EXPERIENCE X  X X X X  X X X X X 
 APPLICATIONS EXPERIENCE  X X  X X X X X X X X 
 LANGUAGE EXPERIENCE   X  X X  X X X X X 
PROJECT TOOLS AND TECHNIQUES   X  X X X  X X X X 
   ATTRIBUTES CUSTOMER INTERFACE X     X    X X  
 REQUIREMENTS DEFINITION X   X  X    X X X 
 REQUIREMENTS VOLATILITY X   X X X  X X X X X 
 SCHEDULE   X  X    X X X X 
 SECURITY      X    X X  
 COMPUTER ACCESS   X X  X X  X X X X 
 TRAVEL/REHOSTING/MULTI-SITE X   X X     X X X 
 SUPPORT SOFTWARE MATURITY         X  X  
CALIBRATION 
FACTOR    X  X    X    

EFFORT 
EQUATION MMNom = C(Dsi)X, X =  1.0  1.047  0.91 1.0  1.05-

1.2  1.0 1.2 

SCHEDULE 
EQUATION Td = C(MM)X, X =      0.35   0.32-

0.38  0.356 0.333

 
 
The Putnam SLIM Model [44],[45] 
 

The Putnam SLIM Model is a commercially available (from Quantitative 
Software Management, Inc.) software product based on Putnam’s analysis of the 



software life cycle in terms of the Rayleigh distribution of project personnel level 
versus time. The basic effort macro-estimation model used in SLIM is 
 
  3/43/1

dks tKCS =
 
where 
 

Ss  =  number of delivered source instructions 
K  =  life-cycle effort in man-years 
td  = development time in years 
Ck = a “technology constant.” 

 
Values of Ck typically range between 610 and 57,314.  The current version of SlIM 
allows one to calibrate Ck to past projects or to past projects or to estimate it as a 
function of a project’s use of modern programming practices, hardware constraints, 
personnel experience, interactive development, and other factors. The required 
development effort, DE, is estimated as roughly 40 percent the life-cycle effort for 
large systems. For smaller systems, the percentage varies as a function of system 
size. 
 
The most controversial aspect of the SLIM model is its tradeoff relationship 
between development effort K and between development time td. For a software 
product of a given size, the SLIM software equation above gives 
 

 4

constant

dt
K =  

 
For example, this relationship says that one can cut the cost of a software 

project in half, simply by increasing its development time by 19 percent (e.g., from 
10 months to 12 months). Fig. 5 shows how the SLIM tradeoff relationship 
compares with those of other models; see [ll, ch. 27] for further discussion of this 
issue. 
 



 
Fig. 5. Comparative effort-schedule tradeoff relationships. 

 
On balance, the SLIM approach has provided a number of useful insights 

into software cost estimation, such as the Rayleigh-curve distribution for one-shot 
software efforts, the explicit treatment of estimation risk and uncertainty, and the 
cube-root relationship defining the minimum development time achievable for a 
project requiring a given amount of effort. 
 
 
The Doty Model [27] 
 

This model is the result of an extensive data analysis activity, including 
many of the data points from the SDC sample. A number of models of similar form 
were developed for different application areas. As an example, the model for 
general application is 
  

MM = 5.288 (KDSI)1.047,  for KDSI ≥ 10 
 

 MM = 2.060 (KDSI)1.047 , for KDSI < 10 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏

=

14

1j
if

The effort multipliers fi are shown in Table III . This model has a much 
more appropriate functional form than the SDC model, but it has some problems 



with stability, as it exhibits a discontinuity at KDSI = 10, and produces widely 
varying estimates via the f factors (answering “yes” to “first software developed on 
CPU” adds 92 percent to the estimated cost). 
 

TABLE III. 
DOTY MODEL FOR SMALL PROGRAMS* 

MM = 2.060 I1.047 ∏  
=

14

1I
if

Factor ff Yes No 
Special display f1 1.11 1.00 
Detailed definition of operational requirements f2 1.00 1.11 
Change to operational requirements f3 1.05 1.00 
Real-time operation f4 1.33 1.00 
CPU memory constraint f5 1.43 1.00 
CPU time constraint f6 1.33 1.00 
First software developed on CPU f7 1.92 1.00 
Concurrent development of ADP hardware f8 1.82 1.00 
Timeshare versus batch processing, in development f9 0.83 1.00 
Developer using computer at another facility f10 1.43 1.00 
Development at operational site f11 1.39 1.00 
Development computer different than target 
computer f12 1.25 1.00 

Development at more than one site f13 1.25 1.00 

Programmer access to computer f14
⎩
⎨
⎧

Unlimited
Limited

 1.00 
0.90 

* Less than 10,000 source instructions. 
 
 
The RCA PRICE S Model [22] 
 

PRICE S is a commercially available (from RCA, Inc.) macro cost-
estimation model developed primarily for embedded-system applications. It has 
improved steadily with experience; earlier versions with a widely varying 
subjective complexity factor have been replaced by versions in which a number of 
computer, personnel, and project attributes are used to modulate the complexity 
rating. 

 
PRICE S has extended a number of cost-estimating relationships developed 

in the early 1970’s such as the hardware constraint function shown in Fig. 6 [10]. It 
was primarily developed to handle military software projects, but now also 
includes rating levels to cover business applications. 
 



 
Fig. 6. RCA PRICE S model: Effect of hardware constraints. 

 
PRICE S also provides a wide range of useful outputs on gross phase and 

activity distributions analyses, and monthly project cost schedule expected progress 
forecasts. Price S uses a two-parameter beta distribution rather than a Rayleigh 
curve to calculate development effort distribution versus calendar time. 

 
PRICE S has recently added a software life-cycle support cost estimation 

capability called PRICE SL [34]. It involves the definition of three categories of 
support activities: 
 

• Growth: The estimator specifies the amount of code to be added to the 
product. PRICE SL then uses its standard techniques to estimate the 
resulting life-cycle effort distribution. 

• Enhancement: PRICE SL estimates the fraction of the existing product 
that will be modified (the estimator may provide his own fraction), and 
uses its standard techniques to estimate the resulting life-cycle effort 
distribution. 

• Maintenance: The estimator provides a parameter indicating the quality 
level of the developed code. PRICE SL uses this to estimate the effort 
required to eliminate remaining errors. 

 
 
The COnstructive COst MOdel (COCOMO) [11] 
 



The primary motivation for the COCOMO model has been to help people 
understand the cost consequences of the decisions they will make in 
commissioning, developing, and supporting a software product. Besides providing 
a software cost estimation capability, COCOMO therefore provides a great deal of 
material that explains exactly what costs the model is estimating, and why it comes 
up with the estimates it does. Further, it provides capabilities for sensitivity 
analysis and trade-off analysis of many of the common software engineering 
decision issues. 

 
COCOMO is actually a hierarchy of three increasingly detailed models that 

range from a single macroestimation scaling model as a function of product size to 
a microestimation model with a three-level work breakdown structure and a set of 
phase-sensitive multipliers for each cost driver attribute. To provide a reasonably 
concise example of a current state of the art cost estimation model, the intermediate 
level of COCOMO is described below. 

 
Intermediate COCOMO estimates the cost of a proposed software product 

in the following way: 
 

1) A nominal development effort is estimated as a function of the 
product’s size in delivered source instructions in thousands (KDSI) and the 
project’s development mode. 

 
2) A set of effort multipliers are determined from the product’s ratings 

on a set of 15 cost driver attributes. 
 
3) The estimated development effort is obtained by multiplying the 

nominal effort estimate by all of the product’s effort multipliers. 
 
4) Additional factors can be used to determine dollar costs, 

development schedules, phase and activity distributions, computer costs, annual 
maintenance costs, and other elements from the development effort estimate. 
 

Step 1—Nominal Effort Estimation: First, Table IV is used to determine the 
project’s development mode. Organic-mode projects typically come from stable, 
familiar, forgiving, relatively unconstrained environments, and were found in the 
COCOMO data analysis of 63 projects to have a different scaling equation from the 
more ambitious, unfamiliar, unforgiving, tightly constrained embedded mode. The 
resulting scaling equations for each mode are given in Table V; these are used to 
determine the nominal development effort for the project in man-months as a 
function of the project’s size in KDSI and the project’s development mode. 

 



TABLE IV 
COCOMO SOFTWARE DEVELOPMENT MODES 

  Mode  
Feature Organic Semidetached Embedded 

Organizational understanding 
of product objectives Thorough Considerable General 

Experience in working with 
related software systems Extensive Considerable Moderate 

Need for software 
conformance with pre-
established requirements Basic Considerable Full 

Need for software 
conformance with external 
interface specifications Basic Considerable Full 

Concurrent development of 
associated new hardware 
and operational procedures Some Moderate Extensive 

Need for innovative data 
processing architectures, 
algorithms Minimal Some Considerable 

Premium on early completion Low Medium High 
Product size range <50 KDSI <300 KDSI All sizes 
Examples Batch data 

reduction 
Scientific 

models 
Business 

models 
Familiar OS, 

compiler 
Simple 

inventory, 
production 
control 

Most 
transaction 
processing 
systems 

New OS, 
DBMS 

Ambitious 
inventory, 
production 
control 

Simple 
command 
control 

Large, 
complex 
transaction 
processing 
systems 

Ambitious, 
very large 
OS 

Avionics 
Ambitious 

command 
control 

 
TABLE V 

COCOMO NOMINAL EFFORT AND SCHEDULE EQUATIONS 
DEVELOPMENT MODE NOMINAL EFFORT SCHEDULE 
Organic (MM)NOM = 3.2(KDSI)1.05 TDEV = 2.5(MMDEV)0.38

Semidetached (MM)NOM = 3.0(KDSI)1.12 TDEV = 2.5(MMDEV)0.35

Embedded (MM)NOM = 2.8(KDSI)1.20 TDEV = 2.5(MMDE\/)0.32

(KDSI = thousands of delivered source instructions) 
 

For example, suppose we are estimating the cost to develop the 
microprocessor-based communications processing software for a highly ambitious 
new electronic funds transfer network with high reliability, performance, 



development schedule, and interface requirements. From Table IV, we determine 
that these characteristics best fit the profile of an embedded-mode project. 

 
We next estimate the size of the product as 1 0,000 delivered source 

instructions, or 1 0 KDSI. From Table V, we then determine that the nominal 
development effort for this em-bedded mode project is  

 
2.8(10)1.20 = 44 man-months (MM). 
 
Step 2—Determine Effort Multipliers: Each of the 15 cost driver attributes 

in COCOMO has a rating scale and a set of effort multipliers that indicate by how 
much the nominal effort estimate must be multiplied to account for the project’s 
having to work at its rating level for the attribute. 

 
These cost driver attributes and their corresponding effort multipliers are 

shown in Table VI. The summary rating scales for each cost driver attribute are 
shown in Table VII, except for the complexity rating scale which is shown in Table 
VIII (expanded rating scales for the other attributes are provided in [11]). 
 



Table VI 
INTERMEDIATE COCOMO SOFTWARE DEVELOPMENT EFFORT MULTIPLIERS 

 Ratings 

Cost Drivers 
Very
Low Low Nominal High 

Very 
High 

Extra
High

Product attributes       
RELY—Required software 
reliability 

.75 .88 1 .00 1.15 1.40 

DATA—Database size .94 1 .00 1.08 1.16 
CPLX—Product complexity .70 .85 1 .00 1.15 1 .30 1.65

Computer attributes   

TIME—Execution time constraint 1 .00 1.11 1.30 1.66
STOR—Main storage constraint 1 .00 1 .06 1 .21 1.56
VIRT—Virtual machine volatility* .87 1 .00 1.15 1.30 
TURN—Computer turnaround time .87 1 .00 1.07 1.15 

Personnel attributes 
  

ACAP—Analyst capability 1.46 1.19 1.00 .86 .71 
AEXP—Applications experience 1.29 1.13 1.00 .91 .82 
PCAP—Programmer capability 1.42 1.17 1.00 .86 .70 
VEXP—Virtual machine 
experience* 

1.21 1.10 1.00 .90  

LEXP—Programming language 
experience 

1.14 1 .07 1.00 .95  

Project attributes 
  

MODP—Use of modern 
programming practices 

1.24 1.10 1.00 .91 .82 

TOOL—Use of software tools 1.24 1.10 1.00 .91 .83 
SCED—Required development 
schedule 

1.23 1.08 1.00 1.04 1.10 

*For a given software product, the underlying virtual machine is the complex of 
hardware and software (OS,DBMS, etc.) it calls on to accomplish its tasks. 

 



 
TABLE VII 

COCOMO SOFTWARE COST DRIVER RATINGS 
  Ratings  
Cost Driver Very Low Low Nominal High Very High Extra 

High 
Product 

attributes       

RELY Effect: slight 
inconvenience 

Low, easily 
recoverable 
losses 

Moderate, 
recoverable 
losses 

High financial loss Risk to human 
life  

DATA  10
DSI Prog.

bytes DB
< 10010

P

D
<< 1000100

P

D
<<  100

P

D
>   

CPLX See Table VIII See Table VIII See Table VIII See Table VIII See Table VIII 
See 

Table 
VIII 

Computer 
attributes       

TIME   
< 50%  use of 

available 
execution time 

70% 85% 95% 

STOR    < 50% use of 
available storage 70% 85% 95% 

VIRT  

Major change 
every 12 
months 
Minor: 1 month

Major: 6 months 
Minor: 2 weeks 

Major: 2 months Minor: 
1 week 

Major: 2 weeks 
Minor: 2 
days 

 

TURN  Interactive Average turnaround 
< 4 hours 4–12 hours >12 hours  

Personnel 
attributes       

ACAP 15th percentile* 35th percentile 55th percentile 75th percentile 90th percentile  

AEXP < 4 months 
experience 1 year 3 years 6 years 12 years  

PCAP 15th percentile* 35th percentile 55th percentile 75th percentile 90th percentile  

VEXP < 1 month 
experience 4 months 1 year 3 years   

LEXP < 1 month 
experience 4 months 1 year 3 years   

Project 
attributes       

MODP No use Beginning use Some use General use Routine use  

TOOL 
Basic 

microprocessor 
tools 

Basic mini tools Basic midi/maxi 
tools 

Strong maxi 
programming, test 
tools 

Add 
requirements
, design, 
management, 
documentati
on tools 

 

SCED 75% of nominal 85%  100%  130%  160%   
*Team rating criteria: analysis (programming) ability, efficiency, ability to communicate and cooperate. 

 



TABLE VIII 
COCOMO MODULE COMPLEXITY RATINGS VERSUS TYPE OF MODULE 

Rating Control Operations 
Computational 

Operations 
Device-dependent 

Operations 
Data Management 

Operations 
Very 
low 

Straightline code 
with a few 
nonnested SP* 
operators: DOs, 
CASEs, 
IFTHENELSEs. 
Simple predicates 

Evalution of simple 
expressions: 
e.g., A=B+C* 
(D–E) 

Simple read, write 
statements with 
simple formats 

Simple arrays in 
main memory 

Low Straightforward 
nesting of SP 
operators. Mostly 
simple predicates 

Evaluation of 
moderate-level 
expressions, 
e.g., D = SQRT 
(B**2–4*A*C) 

No cognizance 
needed of 
particular 
processor or 
I/O device 
characteristics. 
I/O done at 
GET/PUT 
level. No 
cognizance of 
overlap 

Single file 
subsetting with 
no data 
structure 
changes, no 
edits, no 
intermediate 
files 

Nomina
l 

Mostly simple 
nesting. Some 
intermodule 
control. Decision 
tables 

Use of standard 
math and 
statistical 
routines. Basic 
matrix/vector 
operations 

I/O processing 
includes device 
selection, 
status checking 
and error 
processing 

Multi-file input 
and single file 
output. Simple 
structural 
changes, 
simple edits 

High Highly nested SP 
operators with 
many compound 
predicates. Queue 
and stack control. 
Considerable 
intermodule 
control. 

Basic numerical 
analysis (NA) 
multivariate 
interpolation, 
ordinary 
differential 
equations. Basic 
truncation, 
roundoff 
concerns 

Operations at 
physical I/O 
level (physical 
storage address 
translations, 
seeks, reads, 
etc.). 
Optimized I/O 
overlap 

Special purpose 
subroutines 
activated by 
data stream 
contents. 
Complex data 
restructuring at 
record level 

Very 
High 

Reentrant and 
recursive coding. 
Fixed-priority 
interrupt 
handling 

Difficult but 
structured NA.: 
near singular 
matrix 
equations, 
partial 
differential 
equations 

Routines for 
interrupt 
diagnosis, 
servicing, 
masking. 
Communicatio
n line handling 

A generalized, 
parameter-
driven file 
structuring 
routine. File 
building, 
command 
processing, 
search 
optimization 

Extra 
high 

Multiple resource 
scheduling with 
dynamically 
changing 
priorities. 
Microcode-level 
control 

Difficult and 
unstructured 
NA.: highly 
accurate 
analysis of 
noisy, stochastic 
data 

Device timing-
dependent 
coding, micro-
programmed 
operations 

Highly coupled, 
dynamic 
relational 
structures. 
Natural 
language data 
management 

*SP structured programming 



 
 

The results of applying these tables to our microprocessor communications 
software example are shown in Table IX. The effect of a software fault in the 
electronic fund transfer system could be a serious financial loss; therefore, the 
project’s RELY rating from Table VII is High. Then, from Table VI, the effort 
multiplier for achieving a High level of required reliability is 1.15, or 15 percent  
more effort than it would take to develop the software to a nominal level of 
required reliability. 

 
TABLE IX 

COCOMO COST DRIVER RATINGS: MICROPROCESSOR COMMUNICATIONS 
SOFTWARE 

Cost 
Driver Situation Rating 

Effort 
Multiplier

RELY Serious financial consequences of 
software faults 

High 1.15 

DATA 20,000 bytes Low 0.94 
CPLX Communications processing Very High 1.30 
TIME Will use 70% of available time High 1.11 
STOR 45K of 64K store (70%) High 1.06 
VIRT Based on commercial microprocessor 

hardware 
Nominal 1.00 

TURN Two-hour average turnaround time Nominal 1.00 
ACAP Good senior analysts High 0.86 
AEXP Three years Nominal 1.00 
PCAP Good senior programmers High 0.86 
VEXP Six months Low 1.10 
LEXP Twelve months Nominal 1.00 
MODP Most techniques in use over one year High 0.91 
TOOL At basic minicomputer tool level Low 1.10 
SCED Nine months Nominal 1.00 
Effort adjustment factor (product of effort multipliers) 1.35 

 
The effort multipliers for the other cost driver attributes are obtained 

similarly, except for the Complexity attribute, which is obtained via Table VIII. 
Here, we first determine that communications processing is best classified under 
device-dependent operations (column 3 in Table VIII). From this column, we 
determine that communication line handling typically has a complexity rating of 
very high; from Table VI, then, we determine that its cone-sponding effort 
multiplier is 1.30. 

 
Step 3—Estimate Development Effort: We then compute the estimated 

development effort for the microprocessor communications software as the 
nominal development effort (44 MM) times the product of the effort multipliers for 
the 15 cost driver attributes in Table IX (1.35, in Table IX). The resulting estimated 
effort for the project is then 



 
(44 MM)(l.35)= 59 MM. 

 
Step 4—Estimate Related Project Factors. COCOMO has additional cost 

estimating relationships for computing the resulting dollar cost of the project and 
for the breakdown of cost and effort by life-cycle phase (requirements, design, etc.) 
and by type of project activity (programming, test planning, management, etc.). 
Further relationships support the estimation of the project’s schedule and its phase 
distribution. For example, the recommended development schedule can be obtained 
from the estimated development man-months via the embedded-mode schedule 
equation in Table V: 
 

TDEV 2.5(59)0.32 = 9 months 
 
As mentioned above, COCOMO also supports the most common types of 
sensitivity analysis and tradeoff analysis involved in scoping a software project. 
For example, from Tables VI and VII, we can see that providing the software 
developers with an interactive computer access capability (low turn-around time) 
reduces the TURN effort multiplier from 1 .00 to 0.87, and thus reduces the 
estimated project effort from 59 MM to 
 

(59 MM)(0.87) = 51 MM. 
 
The COCOMO model has been validated with respect to a sample of 63 projects 
representing a wide variety of business, scientific, systems, real-time, and support 
software projects. For this sample, Intermediate COCOMO estimates come within 
20 percent of the actuals about 68 percent of the time (see Fig. 7). Since the 
residuals roughly follow a normal distribution, this is equivalent to a standard 
deviation of roughly 20 percent of the project actuals. This level of accuracy is 
representative of the current state of the art in software cost models. One can do 
somewhat better with the aid of a calibration coefficient (also a COCOMO option), 
or within a limited applications context, but it is difficult to improve significantly 
on this level of accuracy while the accuracy of software data collection remains in 
the “±20 percent ” range. 
 



 
Fig. 7 Intermediate COCOMO estimates versus project actuals. 

 
A Pascal version of COCOMO is available for a nominal distribution charge from 
the Wang Institute, under the name WICOMO [18]. 
 
 
Recent Software Cost Estimation Models 
 

Most of the recent software cost estimation models tend to follow the Doty 
and COCOMO models in having a nominal scaling equation of the form MMNOM = 
c (KDSI)x and a set of multiplicative effort adjustment factors determined by a 
number of cost driver at-tribute ratings. Some of them use the Rayleigh curve 
approach to estimate distribution across the software life cycle, but most use a 
more conservative effort/schedule trade-off relation than the SLIM model. These 
aspects have been summarized for the various models in Table II and Fig. 5. 
 

The Bailey-Basili meta-model [4] derived the scaling equation 
 

MMNOM = 3.5 + 0.73 (KDSI)1.16

 
and used two additional cost driver attributes (methodology level and complexity) 
to model the development effort of 18 projects in the NASA-Goddard Software 



Engineering Laboratory to within a standard deviation of 15 percent . Its accuracy 
for other project situations has not been determined. 
 

The Grumman SOFCOST Model [19] uses a similar but unpublished 
nominal effort scaling equation, modified by 30 multiplicative cost driver variables 
rated on a scale of 0 to 10. Table II includes a summary of these variables. 

 
The Tausworthe Deep Space Network (DSN) model [50] uses a linear 

scaling equation (MMNOM = a(KDSI)1.0) and a similar set of cost driver attributes, 
also summarized in Table II. It also has a well-considered approach for determining 
the equivalent KDSI involved in adapting existing software within a new product. 
It uses the Rayleigh curve to determine the phase distribution of effort, but uses a 
considerably more conservative version of the SLIM effort-schedule tradeoff 
relationship (see Fig. 5). 

 
The Jensen model [30], [31] is a commercially available model with a 

similar nominal scaling equation, and a set of cost driver attributes very similar to 
the Doty and COCOMO models (but with different effort multiplier ranges); see 
Table II. Some of the multiplier ranges in the Jensen model vary as functions of 
other factors; for example, increasing access to computer resources widens the 
multiplier ranges on such cost drivers as personnel capability and use of software 
tools. It uses the Rayleigh curve for effort distribution, and a somewhat more 
conservative effort-schedule trade-off relation than SLIM (see Fig. 5). As with the 
other commercial models, the Jensen model produces a number of useful outputs 
on resource expenditure rates, probability distributions on costs and schedules, etc. 
 
 
C. Outstanding Research Issues in Software Cost Estimation 
 

Although a good deal of progress has been made in software cost 
estimation, a great deal remains to be done. This section updates the state-of-the-art 
review published in [11], and summarizes the outstanding issues needing further 
research: 
 

1) Software size estimation 
 
2) Software size and complexity metrics 

 
3) Software cost driver attributes and their effects 

 
4) Software cost model analysis and refinement 

 
5) Quantitative models of software project dynamics 

 
6) Quantitative models of software life-cycle evolution 

 
7) Software data collection 



 
1) Software Size Estimation: The biggest difficulty in using today’s 

algorithmic software cost models is the problem of providing sound sizing 
estimates. Virtually every model requires an estimate of the number of source or 
object instructions to be developed, and this is an extremely difficult quantity to 
determine in advance. It would be most useful to have some formula for 
determining the size of a software product in terms of quantities known early in the 
software life cycle, such as the number and/or size of the files, input formats, 
reports, displays, requirements specification elements, or design specification 
elements. 

 
Some useful steps in this direction are the function-point approach in [2] 

and the sizing estimation model of [29], both of which have given reasonably good 
results for small-to-medium sized business programs within a single data 
processing organization. Another more general approach is given by DeMarco in 
[17].  It has the advantage of basing its sizing estimates on the properties of 
specifications developed in conformance with DeMarco’s paradigm models for 
software specifications and designs: number of functional primitives, data 
elements, input elements, output elements, states, transitions between states, 
relations, modules, data tokens, control tokens, etc. To date, however, there has 
been relatively little calibration of the formulas to project data. A recent IBM study 
[14] shows some correlation between the number of variables defined in a state-
machine design representation and the product size in source instructions. 

 
Although some useful results can be obtained on the software sizing 

problem, one should not expect too much. A wide range of functionality can be 
implemented beneath any given specification element or I/O element, leading to a 
wide range of sizes (recall the uncertainty ranges of this nature in Fig. 3). For 
example, two experiments, involving the use of several teams developing a 
software program to the same overall functional specification, yielded size ranges 
of factors of 3 to 5 between programs (see Table X). 
 

TABLE X 
SIZE RANGES OF SOFTWARE PRODUCTS PERFORMING SAME FUNCTION 

Experiment Product 
No. of 
Teams 

Size range 
(source-instr.) 

Weinberg & Schulman 
[55] 

Simultaneous linear 
equations 

6 33–165 

Boehm, Gray, & 
Seewaldt [13] 

Interactive cost model 7 1514–4606 

 
The primary implication of this situation for practical software sizing and 

cost estimation is that there is no royal road to software sizing. This is no magic 
formula that will provide an easy and accurate substitute for the process of thinking 
through and fully understanding the nature of the software product to be developed. 
There are still a number of useful things that one can do to improve the situation, 
including the following: 



 
• Use techniques which explicitly recognize the ranges of variability in 

software sizing. The PERT estimation technique [56] is a good 
example. 

• Understand the primary sources of bias in software sizing estimates. See 
[11, ch. 21]. 

• Develop and use a corporate memory on the nature and size of previous 
software products. 

 
2)  Software Size and Complexity Metrics: Delivered source 

instructions (DSI) can be faulted for being too low-level a metric for use in early 
sizing estimation. On the other hand, DSI can also be faulted for being too high-
level a metric for precise software cost estimation. Various complexity metrics 
have been formulated to more accurately capture the relative information content of 
a program’s instructions, such as the Halstead Software Science metrics [24], or to 
capture the relative control complexity of a program, such as the metrics 
formulated by McCabe in [39]. A number of variations of these metrics have been 
developed; a good recent survey of them is given in [26]. 

 
However, these metrics have yet to exhibit any practical superiority to DSI 

as a predictor of the relative effort required to develop software. Most recent 
studies [32, 48] show a reasonable correlation between these complexity metrics 
and development effort, but no better a correlation than that between DSI and 
development effort. 

 
Further, the recent [25] analysis of the software science results indicates 

that many of the published software science “successes” were not as successful as 
they were previously considered. It indicates that much of the apparent agreement 
between software science formulas and project data was due to factors overlooked 
in the data analysis: inconsistent definitions and interpretations of software science 
quantities, unrealistic or inconsistent assumptions about the nature of the projects 
analyzed, overinterpretation of the significance of statistical measures such as the 
correlation coefficient, and lack of investigation of alternative explanations for the 
data. The software science use of psychological concepts such as the Stroud 
number have also been seriously questioned in [16]. 

 
The overall strengths and difficulties of software science are summarized in 

[47]. Despite the difficulties, some of the software science metrics have been useful 
in such areas as identifying error-prone modules. In general, there is a strong 
intuitive argument that more definitive complexity metrics will eventually serve as 
better bases for definitive software cost estimation than will DSI. Thus, the area 
continues to be an attractive one for further research. 

 
3)  Software Cost Driver Attributes and Their Effects: Most of the 

software cost models discussed above contain a selection of cost driver attributes 
and a set of coefficients, functions, or tables representing the effect of the attribute 
on software cost (see Table II). Chapters 24–28 of [11] contain summaries of the 



research to date on about 20 of the most significant cost driver attributes, plus 
statements of nearly 100 outstanding research issues in the area. 

 
Since the publication of [11] in 1981, a few new results have appeared. 

Lawrence [35] provides an analysis of 278 business data processing programs that 
indicate a fairly uniform development rate in procedure lines of code per hour, 
some significant effects on programming rate due to batch turnaround time and 
level of experience, and relatively little effect due to use of interactive operation 
and modern programming practices (due, perhaps, to the relatively repetitive nature 
of the software jobs sampled). Okada and Azuma [42] analyzed 30 CAD/CAM 
programs and found some significant effects due to type of software, complexity, 
personnel skill level, and requirements volatility. 

 
4) Software Cost Model Analysis and Refinement: The most useful 

comparative analysis of software cost models to date is the Thibodeau [52] study 
performed for the U.S. Air Force. This study compared the results of several 
models (the Wolverton, Doty, PRICE 5, and SLIM models discussed earlier, plus 
models from the Boeing, SDC, Tecolote, and Aerospace corporations) with respect 
to 45 project data points from three sources. 

 
Some generally useful comparative results were obtained, but the results 

were not definitive, as models were evaluated with respect to larger and smaller 
subsets of the data. Not too surprisingly, the best results were generally obtained 
using models with calibration coefficients against data sets with few points. In 
general, the study concluded that the models with calibration coefficients achieved 
better results, but that none of the models evaluated were sufficiently accurate to be 
used as a definitive Air Force software cost estimation model. 

 
Some further comparative analyses are currently being conducted by 

various organizations, using the database of 63 software projects in [11], but to date 
none of these have been published. 

 
In general, such evaluations play a useful role in model refinement. As 

certain models are found to be inaccurate in certain situations, efforts are made to 
determine the causes, and to refine the model to eliminate the sources of 
inaccuracy. 

 
Relatively less activity has been devoted to the formulation, evaluation, and 

refinement of models to cover the effects of more advanced methods of software 
development (prototyping, incremental development, use of application generators, 
etc.) or to estimate other software-related life-cycle costs (conversion, maintenance, 
installation, training, etc.). An exception is the excellent work on software 
conversion cost estimation per-formed by the Federal Conversion Support Center 
[28]. An extensive model to estimate avionics software support costs using a 
weighted-multiplier technique has recently been developed [49]. Also, some initial 
experimental results have been obtained on the quantitative impact of prototyping 
in [1 3] and on the impact of very high level nonprocedural languages in [58]. In 



both studies, projects using prototyping and VHLL’s were completed with 
significantly less effort. 

 
5) Quantitative Models of Software Project Dynamics: Current software 

cost estimation models are limited in their ability to represent the internal dynamics 
of a software project, and to estimate how the project’s phase distribution of effort 
and schedule will be affected by environmental or project management factors. For 
example, it would be valuable to have a model that would accurately predict the 
effort and schedule distribution effects of investing in more thorough design 
verification, of pursuing an incremental development strategy, of varying the 
staffing rate or experience mix, of reducing module size, etc. 

 
Some current models assume a universal effort distribution, such as the 

Rayleigh curve [44] or the activity distributions in [57], which are assumed to hold 
for any type of project situation. Somewhat more realistic, but still limited are 
models with phase-sensitive effort multipliers such as PRICE S [22] and Detailed 
COCOMO [11]. 

 
Recently, some more realistic models of software project dynamics have 

begun to appear, although to date none of them have been calibrated to software 
project data. The Phister phase-by-phase model in [43] estimates the effort and 
schedule required to design, code, and test a software product as a function of such 
variables as the staffing level during each phase, the size of the average module to 
be developed, and such factors as inter-personal communications overhead rates 
and error detection rates. The Abdel Hamid-Madnick model [1], based on 
Forrester’s System Dynamics worldview, estimates the time distribution of effort, 
schedule, and residual defects as a function of such factors as staffing rates, 
experience mix, training rates, personnel turnover, defect introduction rates, and 
initial estimation errors. Tausworthe [51] derives and calibrates alternative versions 
of the SLIM effort—schedule trade-off relationship, using an intercommunication-
overhead model of project dynamics. Some other recent models of software project 
dynamics are the Mitre SWAP model and the Duclos [21] total software life-cycle 
model. 

 
6) Quantitative Models of Software Life-Cycle Evolution: Although most of 

the soft-ware effort is devoted to the software maintenance (or life-cycle support) 
phase, only a few significant results have been obtained to date in formulating 
quantitative models of the software life-cycle evolution process. Some basic studies 
by Belady and Lehman analyzed data on several projects and derived a set of fairly 
general “laws of program evolution” [7], [37]. For example, the first of these laws 
states: 
 

“A program that is used and that as an implementation of its specification 
reflects some other reality, undergoes continual change or becomes 
progressively less useful. The change or decay process continues until it is 
judged more cost effective to replace the system with a recreated version.” 

 



Some general quantitative support for these laws was obtained in several studies 
during the 1970’s, and in more recent studies such as [33]. However, efforts to 
refine these general laws into a set of testable hypotheses have met with mixed 
results. For example, the Lawrence [36] statistical analysis of the Belady-Lahman 
data showed that the data sup-ported an even stronger form of the first law 
(“systems grow in size over their useful life”), that one of the laws could not be 
formulated precisely enough to be tested by the data, and that the other three laws 
did not lead to hypotheses that were supported by the data. 
 

However, it is likely that variant hypotheses can be found that are supported 
by the data (for example, the operating system data supports some of the 
hypotheses better than does the applications data). Further research is needed to 
clarify this important area. 

 
7) Software Data Collection: A fundamental limitation to significant 

progress in soft-ware cost estimation is the lack of unambiguous, widely used 
standard definitions for software data. For example, if an organization reports its 
“software development man-months,” do these include the effort devoted to 
requirements analysis, to training, to secretaries, to quality assurance, to technical 
writers, or to uncompensated overtime? Depending on one’s interpretations, one 
can easily cause variations of over 20 percent  (and often over a factor of 2) in the 
meaning of reported “software development man-months” between organizations 
(and similarly for “delivered instructions,” “complexity,” “storage constraint,” 
etc.). Given such uncertainties in the ground data, it is not surprising that software 
cost estimation models cannot do much better than “within 20 percent of the 
actuals, 70 percent of the time.” 

 
Some progress toward clear software data definitions has been made. The 

IBM FSD database used in [53] was carefully collected using thorough data 
definitions, but the detailed data and definitions are not generally available. The 
NASA-Goddard Software Engineering Laboratory database [5,6,40] and the 
COCOMO database [11] provide both clear data definitions and an associated 
project database that are available for general use (and are reasonably compatible). 
The recent Mitre SARE report [59] provides a good set of data definitions. 

 
But there is still no commitment across organizations to establish and use a 

set of clear and uniform software data definitions. Until this happens, our progress 
in developing more precise software cost estimation methods will be severely 
limited. 
 
 

IV. SOFTWARE ENGINEERING ECONOMICS BENEFITS AND 
CHALLENGES 

 
This final section summarizes the benefits to software engineering and 

software management provided by a software engineering economics perspective 
in general and by software cost estimation technology in particular. It concludes 



with some observations on the major challenges awaiting the field. 
 
 
Benefits of a Software Engineering Economics Perspective 
 

The major benefit of an economic perspective on software engineering is 
that it provides a balanced view of candidate software engineering solutions, and an 
evaluation frame-work that takes account not only of the programming aspects of a 
situation, but also of the human problems of providing the best possible 
information processing service within a resource-limited environment. Thus, for 
example, the software engineering economics approach does not say, “we should 
use these structured structures because they are mathematically elegant” or 
“because they run like the wind” or “because they are part of the structured 
revolution.”  Instead, it says “we should use these structured structures because 
they provide people with more benefits in relation to their costs than do other 
approaches.” And besides the framework, of course, it also provides the techniques 
that help us to arrive at this conclusion. 
 
 
Benefits of Software Cost Estimation Technology 
 

The major benefit of a good software cost estimation model is that it 
provides a clear and consistent universe of discourse within which to address a 
good many of the software engineering issues that arise throughout the software 
life cycle. it can help people get together to discuss such issues as the following. 
 

• Which and how many features should we put into the software product? 
• Which features should we put in first? 
• How much hardware should we acquire to support the software 

product’s development, operation, and maintenance? 
• How much money and how much calendar time should we allow for 

software development? 
• How much of the product should we adapt from existing software’? 
• How much should we invest in tools and training? 

 
Further, a well-defined software cost estimation model can help avoid the 

frequent misinterpretations, underestimates, overexpectations, and outright buy-ins 
that still plague the software field. In a good cost-estimation model, there is no way 
of reducing the estimated software cost without changing some objectively 
verifiable property of the software project. This does not make it impossible to 
create an unachievable buy-in, but it significantly raises the threshold of credibility. 

 
A related benefit of software cost estimation technology is that it provides a 

powerful set of insights into how a software organization can improve its 
productivity. Many of a software cost model’s cost-driver attributes are 
management controllables: use of soft-ware tools and modern programming 
practices, personnel capability and experience, available computer speed, memory, 



and turnaround time, and software reuse. The cost model helps us determine how to 
adjust these management controllables to increase productivity, and further 
provides an estimate of how much of a productivity increase we are likely to 
achieve with a given level of investment. For more information on this topic, see 
[11, ch. 33], [12], and the recent plan for the U.S. Department of Defense Software 
Initiative [20]. 

 
Finally, software cost estimation technology provides an absolutely 

essential foundation for software project planning and control. Unless a software 
project has clear definitions of its key milestones and realistic estimates of the time 
and money it will take to achieve them, there is no way that a project manager can 
tell whether a project is under control or not. A good set of cost and schedule 
estimates can provide realistic data for the PERT charts, work breakdown 
structures, manpower schedules, earned value increments, and so on, necessary to 
establish management visibility and control. 

 
Note that this opportunity to improve management visibility and control requires a 
complementary management commitment to define and control the reporting of 
data on software progress and expenditures. The resulting data are therefore worth 
collecting simply for their management value in comparing plans versus 
achievements, but they can serve another valuable function as well: they provide a 
continuing stream of calibration data for evolving a more accurate and refined 
software cost estimation models. 
 
 
Software Engineering Economics Challenges 
 

The opportunity to improve software project management decision making 
through improved software cost estimation, planning, data collection, and control 
brings us back full circle to the original objectives of software engineering 
economics: to provide a better quantitative understanding of how software people 
make decisions in resource-limited situations. 

 
The more clearly we as software engineers can understand the quantitative 

and economic aspects of our decision situations, the more quickly we can progress 
from a pure seat-of-the-pants approach on software decisions to a more rational 
approach that puts all of the human and economic decision variables into clear 
perspective. Once these decision situations are more clearly illuminated, we can 
then study them in more detail to address the deeper challenge: achieving a 
quantitative understanding of how people work together in the software 
engineering process. 

 
Given the rather scattered and imprecise data currently available in the 

software engineering field, it is remarkable how much progress has been made on 
the software cost estimation problem so far. But there is not much further we can 
go until better data becomes available. The software field cannot hope to have its 
Kepler or its Newton until it has had its army of Tycho Brahes, carefully preparing 



the well-defined observational data from which a deeper set of scientific insights 
may be derived. 
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