
THE INFLUENCE OF
COLOR

ON PROGRAM READABILITY AND COMPREHENSIBILITY

Gerard K. Rambally
Department of Computer Science

University of Regina
Regina, Saskatchewan

Canada 545 0A2

Abstract
Readability and comprehensibility are

among the most important attributes of a
program. A program that is easy to read
and understand is easier to test,
maintain, and modify. Many factors affect
program readability and comprehensibility,
including variable names, internal
documentation, modularity, and so on.
This paper investigates the influence of
color on program readability and compre-
hension.. Three color schemes were used:
Color-scheme-A used different colors to
indicate the different blocks in a
program; Color-scheme-B used different
colors to identify the various statements
function in the program; and the third
color scheme was the usual black-and-white
programs. This study showed that subjects
who used programs with Color-scheme-B had
the highest mean score for program
comprehension, followed by those who used
Color-scheme-A. Subjects who used black-
and-white programs scored the lowest on
the comprehension quiz.

1. Introduction
Readability and comprehensibility

(i.e. the degree of ease with which a
programmer can read and comprehend a
program) are among the most important
attributes of a program. A program that
is easy to read and understand is easier
to test, maintain, and modify. Many
aspects of programming style affect
readability and comprehensibility,
including variable names, internal
documentation, modularity, and formatting.
It is the influence of formatting on
readability and comprehension that is of
concern in this paper.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1986 ACM-O-89791.178-4/86/0002/0173 $00.75

Program readability and comprehension
are important areas of research for
several reasons. First, it is necessary
to fully understand a program in order to
select appropriate test data and interpret
the output produced with such data.
Second, comprehension is essential to
debug the logical and semantic aspects of
a program. Finally, successful
modification of a program requires a
thorough understanding of the program.
Thus, any factors which can improve
program comprehension will have positive
effects on (and very likely improve the
efficiency of) the software development
process.

The objective of this research
project is to gather experimental evidence
to determine the effects of color on
program readability and comprehension. In
an attempt to make control structures more
visible and easier to follow two different
color schemes have been used:
(i)

(ii)

Color-scheme-A (illustrated in Appen-
dix A) used different color codes to
bound the scope of loops and condi-
tionals. i.e. the control structures
in a particular block were coded in
one color; a nested block was coded
in another color, and so on.
Color-scheme-B (illustrated in Appen-
dix A) used different color codes to
identify the various statements
function in the program. For
example, one color was used for I/O
statements, another for declaration
statements, another for procedure
calls, another for repetition
statements, while yet anoiher for
decision statements, and so on.

2. Techniques for Improving Program
Readability and Comprehension

Recent studies on improving program
readability and comprehensibility have
concentrated on program indentation 17,9,
121 to make the logical structure of
programs clearer by allowing visual
grouping of statements and visual
association between separate parts of
control structures. The usefulness of
indentation for these purposes, however,
is diminished when parts of control

173

structures are heavily nested or widely
separated, for example, when loops CTOSS
one or more page boundaries on a listing.
Clifton [31 claims that this makes it
difficult for a reader to skip around a
group of statements or find the path back
from the end to the beginning of a loop.

Further studies on improving program
readability and comprehensibility have
combined indentation with such factors as
internal documentation [10,14], blank-line
insertion 16,101, control flow 18,141,
connector-lines for control structures 13,
111 I and solid lines bounding the scope of
loops and conditionals 141.

Careful use of internal documentation
may help, for example, Worcio [lo] found
that the use of indentation and one line
of interspersed documentation resulted in
the highest degree of program
comprehension. However, Weissman 1141
found that misuse of documentation may
actually reduce the clarity of programs.

Some authors consider flowcharts to
be very helpful in showing the logical
structure of programs tl]. Other authors
have questioned this use of flowcharts:
one experiment indicated that a
combination of flowchart and program
listing is at best only slightly easier to
understand than a program listing alone
[131. Another technique to improve
program readability and comprehension,
which was proposed by Clifton [31,
involved the use of connector-lines.
These lines connect the beginnings to
endings of control structures on entire
programs.

The author has found no studies (in
the computer literature) which
investigated the influence of color on
program readability and comprehension.
This could have been because of the high
cost of color printers, however, this
excuse is no longer valid. Today, it is
only slightly more expensive to print
programs in color than in black and white.

3. Experimental Procedures
Hypotheses:
(i)

(ii)

When Color-scheme-A is used, expert
and novice Pascal programmers will
show only slight increase in program
comprehension when compared to
programmers who used the identically
formatted program without color.
When Color-scheme-B is used, expert
and novice Pascal programmers will
show significant increase in program
comprehension when compared to
programmers who used the identically
formatted program without color.

Independent Variables:
1. Color coding schemes:

(i) Color-scheme-A (described above)
iii) Color-scheme-B idescribed above)
(iii) No color (i.e. black and white

programs).
2. Level of programmer experience:

(il Novice: Less than three years of

programming experience in schoo:L
and/or less than two years pro-
fessionally.

(ii) Expert: Three or more years o,E
programming experience in school
and/or two or more years pro,-
fessionally.

Dependent Variables:
1. Comprehension quiz scores.
2. Subjective rating of the program dif-

ficulty.

Subjects:
The novice subjects were selected

from an intermediate-level programming
class in Pascal at the University of
Regina. The experiment was administered
in the twelfth week of a thirteen-week
semester. By this time, the students had
written several Pascal programs beyond the
complexity of the program used in the
experiment.

The expert subjects were selected
from various senior-level Computer Science
classes. These students were enrolled in
the four-year B.Sc. program majoring in
Computer Science.

Materials:
The Pascal program used for both

groups was selected from Grogono 151, and
contains a wide range of syntactical
structures (records, packed-arrays, while-
loops, if-then-elses, etc.), making it a
challenging program for both novices and
experts. This program calculates the
frequency count of each unique word in
some given text. The program was modified
to produce three versions with no blank
lines or comments. The three versions
(illustrated in Appendix A) consisted of
two color versions which were coded using
Color-scheme-A and Color-scheme-B, and one
regular black and white version. For all
versions of the two-page program, the
optimal level of indentation [91, namely
two spaces was used, and all versions were
also divided at the same location when
page boundaries were crossed. These
programs which were very legible, were
distributed to students on computer paper
outputted from a near letter-quality color
printer.

One of the dependent variables was a
subjective rating from 1 to 7 of the
difficulty encountered in comprehending
the program, with 1 being very easy, 4
moderate, and 7 very hard. The second
dependent variable was a comprehension
quiz (contained in Appendix B) which the
subjects were given thirty minutes to
complete.

4. Results
In the final analysis of the data, a

total of 79 students were used. Five
quizzes were excluded from the analysis
for the following reasonsr two subjects
did not know Pascal, and three subjects
were observed not participating in the

M
E
A
N

S
C
0
R
E
s

16

14

12

10

8

6

4

2

0

COLOR-SCHEME-A COLOR-SCHEME-B
I

NO COLOR
I

TOTAL

NOVICES 15 14 15 44

EXPERTS 12 12 11 35

Table 1. Breakdown of Subjects per cell

.- ,- EXPERT

NOVICE

-------we ------------------ -_--------------__- -__-----_----_-----
I I

BLACK-AND-WHITE COLOR-SCHEME-A COLOR-SCHEME-B

VERSIONS OF PROGRAM

Figure 1. Mean Scores of Novices and Experts

task. Table 1 summarizes the breakdown of
subjects per cell.

As was expected, the experts did
better on the quizzes than the novices.
The mean score was 10.6 for experts and
7.2 for novices, out of a possible 15
points. The highest mean scores were
obtained by both the novices and experts
who had programs with Color-scheme-B; 11.8
for experts and 8.3 for novices. Both
groups also had the lowest mean scores on
the black-and-white programs, with 8.0 for
experts and 5.8 for novices. These
results are summarized in figure 1.

On the subjective rating from 1 to 7,
with 1 being very easy, -and 7 very hard:
novices rated all versions of the program
to be more difficult to comprehend than
the experts. The average rating of
novices was 5.7, while that for experts
was 3.6. The black-and-white programs
were rated the most difficult to
comprehend by both experts and novices.
The results of the subjective ratings are
summarized in figure 2.

Analysis of the combined results
yield similar results as did the groups
separately. Those subjects who received
the black-and-white programs had a lower

mean score than other subjects, while
those who received programs with Color-
scheme-B had the highest mean score. The
subjective program rating for the combined
subjects ran about the same as for the
separate groups.

The analysis of variance (ANOVA) of
the comprehension quiz scores indicated
that programming experience had an effect
on program comprehension at the ptO.OO1
significance level. The ANOVA also showed
that the color coding schemes had a
significant effect on the mean scores at
the p=O.O15 level. Approximately 38
percent of the variance of the quiz scores
were explained. The ANOVA of the program
difficulty ratings also showed that
programming experience and color coding
schemes had effects on program
comprehension at significance levels
p<O.OOl and p=O.O75, respectively.
Approximately 42 percent of the variance
in the subjective ratings were explained.

5. Discussion
The results indicate that color

coding schemes have a statistically
significant effect on program comprehen-
sion. The color coding scheme that

17s

very
hard 7 I

s 6
U

5

c NOVICE

B R
J A
E T 4
c I
T N 3 4 EXPERT
I G
v s 2
E

very 1
easy

----_--__ _-__________ I ----- --_____----___ -_--_----_--_-------- I I
BLACK-AND-WHITE COLOR-SCHEME-A COLOR-SCHEME-B

VERSIONS OF PROGRAM

Figure 2. Mean Subjective Program Rating of Novices and Experts

produced optimal results in comprehension
is when different colors were used to
indicate the various statements function
in the program (i.e. Color-scheme-B). The
comprehension level decreased when
different color codes were used to
indicate block structures (i.e. color-
shceme-A). This decrease in level of
comprehension might be attributed to the
fact that the subjects were only
accustomed to working with black-and-white
programs, and getting a program completely
coded with seven different colors might
have been confusing to them in the early
minutes of the quiz. This remark was in
fact voiced by many students who got
programs in Color-scheme-A.

The students who received the program
with Color-scheme-B were not overwhelmed
initially since most of the program was in
black-and-white, with only certain
reserved words color coded. This scheme
was the greatest asset to comprehension
because students were able to see quickly
and clearly when a procedure call should
be made, which statements were in a loop,
which were decision satements, which were
declaration statements, which were I/O
statements, and so on. Consequently, as
the students traced the program (to
complete the quiz), the color codes made
the function of every statement so much
more obvious.

These results should not be
surprising since in our everyday lives we
frequently use color codes to convey
information (e.g. red indicates danger,
and a green light indicates it is safe to
90, etc.).

Overall, experts did better on the
comprehension quiz and rated the program
less difficult than the novices. These
results were reassuring because we
expected the experts to do better and to
rate this type of task less difficult than
novices.

Finally, the combined results of the
expert and novice subjects indicated the

highest mean scores in the Color-scheme-B
programs. It is interesting to note,
however, that in the subjective ratings
the Color-scheme-A programs were rated as
the least difficult to understand. We
feel that this result occured because the
subjects found the widespread use of
colors in the programs visually pleasing,
and made the block structures very
obvious. However, during the
comprehension task, the function of the
various statements was not as obvious as
in programs with Color-scheme-B, thus
resulting in lower scores.

6. Conclusion
The use of color codes in programs is

not restricted to Pascal. Any language
allowing structured programming could use
this technique to make it's programs
easier to read and understand. The
technique would be less useful in
unstructured programs because unrestricted
GOT0 statements could not be represented
by color codes without allowing the colors
to overlap. This technique presents
practical implications for the teaching of
programming: color codes may be used to
clearly demonstrate the functions and
relationships of the various statements in
a program.

In this paper, a color-coded
formatting methodology was applied to
study its influence on program readability
and comprehension. In general, the
results indicate that both novices and
experts displayed the highest 1eve:L of
program comprehension when different color
codes were used to identify the various
statements function in a program. The
second highest level of program
comprehension was achieved (again by both
groups) when different color codes were
used to indicate different blocks in the
program. The lowest level of program
comprehension was achieved by novices and
experts who used black-and-white programs.

176

References

111

r21

r31

r41

r51

161

t71

[81

191

I101

Ill1

[121

(131

(141

BOhl, M. Flowchartinp Technigues. ---m--m- ----- -
Scientific Research Associates,
Chicago, 1971.
Boysen, J. and Keller, R. "Measuring
Computer Program Comprehension". ACM
SIGCSE Bulletin 12, 1 (Feb. 1980), --- ---_--
92-102.
Clifton, M.H. "A Technique for Making
Structured Programs more Readable".
ACM SIGPLAN Notices 13, 4 (April --- ------- -------
1978), 58-63.
Gimpel, J.F. *Contour, A Method of
Preparing Structured Flowcharts". ACM --
SIGPLAN Notices 15, 10 (Oct. 1980), ----_ ----_-
35-41.
Grogono, P. Programming in Pascal. -- ---T--* Addison-Wesley Publishrng-Company,
Inc., Reading, MA, 1978, 186-188.
Hueras, J. and Ledgard, H. "An
Automatic Formatting Program for
Pascal". ACM SIGPLAN Notices 12, 7 -- ------ -------
(July 1977), 82-84.
Leinbauch. D.W. "Indentins for the
Compile;"l ACM SIGPLAN Notices 15, 5 --- ----- ------
(May 1980), 41-48.
Love, T. "An Experimental Investiga-
tion of the Effect of Program Struc-
ture on Program Understanding" Proc.
ACM Conference on Language Desisn for --
Reliable Software. March 1977, lm ii.,'-- _--_-_--
Miara, R. et al. "Program Indentation
and Comprehensibility". Communica- -------
tions of the ACM 15, 11 (Nov. 1983), ---- -- --- ---
861-867.
Novcia, A.F. "Indentation Documenta-
tion and Programmer Comprehension".

. gfi Human Factors in Computer Proc -----
fJg;g-

ACM Was~i?jfonT-D~-l~%iS

Ramsdell, J. "Pretty Printing
Structured Programs with Connector
Lines'. ACM SIGPLAN Notices 14, 9 --- ------ ------
(Sept. 1979), 74-75.
Shneiderman, B. and McKay, D.
"Experimental Investigations of
Computer Program Debugging and
Modification". l?roc 6th Interna- --A --- -------
tional Conqress of the International
ErEnomics Assozafin. July 1976,
~~ll<g%??~k,-M~-----
Shneiderman, B.et al. "Experimental
Investigations of the Utility of
Detailed Flowcharts in Programming",
Communications of the ACM 20, 6 (June
myf), 373-381.- - --
Weissman, L.M. "Psychological Com-
plexity of Computer Programs: An
Experimental Methodology". ACM
SIGPLAN Notices 15, 6 (June 1971,
T!T=zK*-- -----

177

- 2
a-w
t-at-
ztx
wzw
&WZ

l.G
a I-

-. -
-l--U
-WE=
aL-Izw
C-W LL EB -

0
z
W

s
W

b
zz
WQ
-1W

zm
z

-izawo - a5
oawprnrr.
zl-l
w I- ii

I-
:
8 IL

. .
ii!
>
I-
a
5
W
L
0

. .
a
a
I
v

a-

i?
ax
I-W

Z . . t
I-

a
c

178

. .
c)

ii r
m KI-Z4WU
4 -wczw+m-

. .
w
a
F
l-

a-

Y *

b w
u

>
40

-IA.
U-

: W

e
c
W

6

f

a
5
w
I-

W

,”
4

._ I-
A

::
v
a

P
a
0 ‘-
3-

a
-+

+- a-
2 t-a
w z!-
c wz
x -w

zi
.- w

c -I I,
al *a

. .

2
I
u

k

c .-
x2
W”
P-l
ZO

,“o
a3
rx
va
-2

>
a

I- a
- a-

u . . .
. .

It m

a
I-
2
W
k-
x
u
2
”

W 114 -
a -c-a

--4t--
at- -aa
I- an3a
2XW 2
w+m w

a a aLz --wL
3+-Q uaznal wwwwua-

a
CL

w
m

._

:
I
v

LL
0 ‘-

z
-w
x-l
WD
aa
20
-3
ax

22

I

=:

cn
a
w
c

z

0
a w
a

0
a

w

;;:
a
t-

a

ii
w

180

APPENDIX Et

COMPREHENSION

1) Circle the global variables in the following list:
TABLE CHARCOUNT BUFFER ENTR I LETT ERS TABLEFULL

21 What is the maximum number of words the input file can hold?

3) Assume that the input file starts as follows
PROTONS. WHICH ARE NONPHOTOMICROGRAPHICAL. ARE .._

Give the values of the following variables:
TABLEtlI.WORD
TABLEt21.WORD
TABLEC31.WORO
TABLEt4I.WORD

4) Why does the variable ENTR!. in the FOR loop of the main
segment of the program. stop at NEXTENTRI - 1. and not at
NEXTENTRI?

5) What output is produced with the following input?
“HE” , HE SAID, SAID “WHAT”. WHAT SAID HE?
HE SAID, “WHAT”.

6) In less than 25 words, describe what this program does.

71 Circle the number indicating the difficulty encountered in
comprehending the program.

1 2 ._ 3 4 5 6 7
very easy moderate very hard

61 List the Computer Science classes which you have taken.

