
Xtext Documentation

September 26, 2014

Contents

I. Getting Started 9

1. 5 Minutes Tutorial 10
1.1. Creating A New Xtext Project . 10
1.2. Generating The Language Infrastructure 10
1.3. Try The Editor . 11
1.4. Conclusion . 12

2. 15 Minutes Tutorial 14
2.1. Create A New Xtext Project . 14
2.2. Write Your Own Grammar . 16
2.3. Generate Language Artifacts . 19
2.4. Run the Generated IDE Plug-in . 20
2.5. Second Iteration: Adding Packages and Imports 20

3. 15 Minutes Tutorial - Extended 27
3.1. Writing a Code Generator With Xtend . 29
3.2. Unit Testing the Language . 34
3.3. Creating Custom Validation Rules . 35

4. Five simple steps to your JVM language 37
4.1. Step One: Create A New Xtext Project 38
4.2. Step Two: Write the Grammar . 38
4.3. Step Three: Generate Language Artifacts 43
4.4. Step Four: Define the Mapping to JVM Concepts 43
4.5. Step Five : Try the Editor! . 48

II. Seven JVM Languages Built With Xbase 50

5. Introduction 51
5.1. Write the Grammar . 51
5.2. Map to Java . 51
5.3. CAUTION: This is Provisional API . 52
5.4. Common Requirements . 52
5.5. Getting the Code . 53

2

5.6. A Short Xtend Primer . 53

6. Scripting Language 57
6.1. Overview . 57
6.2. Running the Example . 58
6.3. Grammar . 58
6.4. Translation to Java . 59

7. Build Language 61
7.1. Overview . 61
7.2. Running the Example . 62
7.3. Grammar . 62
7.4. Translation to Java . 63
7.5. Validation . 65
7.6. Imports . 66
7.7. Operator Overloading . 67
7.8. Run as... Integration . 67

8. DSL for MongoDB 68
8.1. Overview . 69
8.2. Running the Example . 70
8.3. Grammar . 70
8.4. Translation to Java . 72
8.5. Qualified Name Provider . 77
8.6. Validation . 78
8.7. IDE Enhancements . 79

9. DSL for Guice 81
9.1. Overview . 81
9.2. Running the Example . 82
9.3. Grammar . 83
9.4. Translation to Java . 84
9.5. Validation . 88

10.Http Routing Language 89
10.1. Overview . 89
10.2. Running the Example . 90
10.3. Grammar . 90
10.4. Translation to Java . 91

11.Template Language 95
11.1. Overview . 95
11.2. Running the Example . 96
11.3. Grammar . 96
11.4. Translation to Java . 97

3

11.5. Extending the Compiler . 100
11.6. Type Computation . 102
11.7. Value Converter . 103
11.8. Content Assist . 103
11.9. Syntax Highlighting . 104

12.Little Tortoise 105
12.1. Overview . 105
12.2. Running the Example . 107
12.3. Grammar . 107
12.4. Translation to Java . 108
12.5. Interpreter . 109
12.6. Literal Classes . 111

III. Reference Documentation 112

13.Overview 113
13.1. What is Xtext? . 113
13.2. How Does It Work? . 113
13.3. Xtext is Highly Configurable . 113
13.4. Who Uses Xtext? . 114
13.5. Who is Behind Xtext? . 114
13.6. What is a Domain-Specific Language . 114

14.The Grammar Language 116
14.1. A First Example . 116
14.2. The Syntax . 118

14.2.1. Language Declaration . 118
14.2.2. EPackage Declarations . 118
14.2.3. Rules . 123
14.2.4. Parser Rules . 127
14.2.5. Hidden Terminal Symbols . 134
14.2.6. Data Type Rules . 135
14.2.7. Enum Rules . 136
14.2.8. Syntactic Predicates . 137

14.3. Ecore Model Inference . 138
14.3.1. Type and Package Generation . 138
14.3.2. Feature and Type Hierarchy Generation 139
14.3.3. Enum Literal Generation . 140
14.3.4. Feature Normalization . 140
14.3.5. Error Conditions . 141

14.4. Grammar Mixins . 141
14.5. Common Terminals . 142

4

15.Configuration 144
15.1. The Language Generator . 144

15.1.1. A Short Introduction to MWE2 . 144
15.1.2. General Architecture . 146
15.1.3. Standard Generator Fragments . 149

15.2. Dependency Injection in Xtext with Google Guice 149
15.2.1. The Module API . 150
15.2.2. Obtaining an Injector . 152

15.3. Continuous Integration (with Maven) . 153
15.3.1. An overview of the example projects 153
15.3.2. Building an Xtext language with Maven and Tycho 153
15.3.3. Integration in Standard Maven Builds 157

16.Runtime Concepts 159
16.1. Runtime Setup (ISetup) . 159
16.2. Setup within Eclipse-Equinox (OSGi) . 159
16.3. Logging . 160
16.4. Code Generation / Compilation . 160

16.4.1. IGenerator . 160
16.4.2. Output Configurations . 161

16.5. Validation . 161
16.5.1. Automatic Validation . 161
16.5.2. Custom Validation . 163
16.5.3. Validating Manually . 164
16.5.4. Test Validators . 165

16.6. Linking . 167
16.6.1. Declaration of Cross-links . 167
16.6.2. Default Runtime Behavior (Lazy Linking) 168

16.7. Scoping . 168
16.7.1. Global Scopes and Resource Descriptions 170
16.7.2. Local Scoping . 177
16.7.3. Imported Namespace-Aware Scoping 180

16.8. Value Converter . 181
16.9. Serialization . 182

16.9.1. The Contract . 183
16.9.2. Roles of the Semantic Model and the Node Model During Serial-

ization . 183
16.9.3. Parse Tree Constructor . 184
16.9.4. Options . 185
16.9.5. Preserving Comments from the Node Model 185
16.9.6. Transient Values . 186
16.9.7. Unassigned Text . 186
16.9.8. Cross-Reference Serializer . 186
16.9.9. Merge White Space . 186

5

16.9.10.Token Stream . 187
16.10.Formatting (Pretty Printing) . 187

16.10.1.General FormattingConfig Settings 188
16.10.2.FormattingConfig Instructions . 189
16.10.3.Grammar Element Finders . 190

16.11.Fragment Provider (Referencing Xtext Models From Other EMF Artifacts)190
16.12.Encoding in Xtext . 192

16.12.1.Encoding at Language Design Time 192
16.12.2.Encoding at Language Runtime . 193
16.12.3.Encoding of an XtextResource . 194
16.12.4.Encoding in New Model Projects 194
16.12.5.Encoding of Xtext Source Code . 194

16.13.Unit Testing the Language . 194
16.13.1.Creating a simple test class . 195
16.13.2.Writing a parser test . 195
16.13.3.How to write tests that includes multiple different languages . . . 196

17.IDE Concepts 198
17.1. Label Provider . 198

17.1.1. Label Providers For EObjects . 198
17.1.2. Label Providers For Index Entries 200

17.2. Content Assist . 200
17.3. Quick Fixes . 202

17.3.1. Quick Fixes for Linking Errors and Syntax Errors 204
17.4. Template Proposals . 204

17.4.1. Cross Reference Template Variable Resolver 205
17.4.2. Enumeration Template Variable Resolver 206

17.5. Outline View . 207
17.5.1. Influencing the outline structure 207
17.5.2. Styling the outline . 209
17.5.3. Filtering actions . 209
17.5.4. Sorting actions . 211
17.5.5. Quick Outline . 212

17.6. Hyperlinking . 212
17.6.1. Location Provider . 212
17.6.2. Customizing Available Hyperlinks 213

17.7. Syntax Coloring . 213
17.7.1. Lexical Highlighting . 214
17.7.2. Semantic Highlighting . 215

17.8. Rename Refactoring . 216
17.8.1. Customizing . 217
17.8.2. Rename Participants . 218

6

18.Xtext and Java 219
18.1. Plug-in Setup . 219
18.2. Referring to Java Elements using JVM Types 220

18.2.1. Customization Points . 221
18.3. Referring to Java Types Using Xbase . 221
18.4. Inferring a JVM Model . 224

18.4.1. Linking and Indexing . 226
18.5. Using Xbase Expressions . 226

18.5.1. Making Your Grammar Refer To Xbase 226
18.5.2. Using the Xbase Interpreter . 227

18.6. Xbase Language Reference . 228
18.6.1. Lexical Syntax . 229
18.6.2. Types . 232
18.6.3. Expressions . 234
18.6.4. Extension Methods . 254

19.MWE2 256
19.1. Examples . 256

19.1.1. The Simplest Workflow . 256
19.1.2. A Simple Transformation . 258
19.1.3. A Stop-Watch . 260

19.2. Language Reference . 261
19.2.1. Mapping to Java Classes . 262
19.2.2. Module . 262
19.2.3. Properties . 263
19.2.4. Mandatory Properties . 264
19.2.5. Named Components . 265
19.2.6. Auto Injection . 265

19.3. Syntax Reference . 266
19.3.1. Module . 267
19.3.2. Property . 267
19.3.3. Component . 267
19.3.4. String Literals . 268
19.3.5. Boolean Literals . 269
19.3.6. References . 269

20.Typical Language Configurations 270
20.1. Case Insensitive Languages . 270
20.2. Languages Independent of JDT . 271
20.3. Parsing Expressions with Xtext . 272

20.3.1. Construction of an AST . 274
20.3.2. Associativity . 277

7

21.Integration with EMF and Other EMF Editors 279
21.1. Model, Ecore Model, and Ecore . 279
21.2. EMF Code Generation . 282
21.3. XtextResource Implementation . 282
21.4. Integration with GMF Editors . 284

21.4.1. Stage 1: Make GMF Read and Write the Semantic Model As Text 285
21.4.2. Stage 2: Calling the Xtext Parser to Parse GMF Labels 286
21.4.3. Stage 3: A Popup Xtext Editor (experimental) 287

IV. Appendix 288

22.Migrating from Xtext 1.0.x to 2.0 289
22.1. Take the Shortcut . 289
22.2. Migrating Step By Step . 289

22.2.1. Update the Plug-in Dependencies and Import Statements 289
22.2.2. Introduction of the Qualified Name 289
22.2.3. Changes in the index and in find references 290
22.2.4. Rewritten Node Model . 290
22.2.5. New Outline . 291
22.2.6. AutoEditStrategy . 291
22.2.7. Other Noteworthy API Changes 292

22.3. Now go for then new features . 293

23.Migrating from Xtext 0.7.x to 1.0 294
23.1. Migrating Step By Step . 294

23.1.1. Update the Plug-in Dependencies and Import Statements 294
23.1.2. Rename the Packages in the dsl.ui-Plug-in 294
23.1.3. Update the Workflow . 295
23.1.4. MANIFEST.MF and plugin.xml 295
23.1.5. Noteworthy API Changes . 296

8

Part I.

Getting Started

9

1. 5 Minutes Tutorial

In this chapter you will learn how to create a new Xtext project, generate a fully working
language infrastructure and how to start a new Eclipse instance in order to test the editor.
But before we get started, make sure you have Eclipse Xtext properly installed.

1.1. Creating A New Xtext Project

The first step is to create a new Xtext project by choosing File -> New -> Project....
The dialog offers a couple of different project types. Select New Xtext Project from
the category Xtext and finish the wizard with the default settings. You will find 4 new
projects in your workspace which are mostly empty. The Xtext grammar editor will be
opened and show the definition of a very simple Hello World language.

grammar org.xtext.example.mydsl.MyDsl with
org.eclipse.xtext.common.Terminals

generate myDsl "http://www.xtext.org/example/mydsl/MyDsl"

Model:
greetings+=Greeting*;

Greeting:
’Hello’ name=ID ’!’;

The only thing this language does, is to allow to write down a list of greetings. The
following would be proper input:

Hello Xtext!
Hello World!

1.2. Generating The Language Infrastructure

In order to test drive this language, you will have to generate the respective language
infrastructure. Therefore, choose Run As -> Generate Xtext Artifacts from the context

10

menu of the grammar editor. A new Java process will be spawned and afterwards you
will find a couple of new files in the projects that were created in the first step. What
you see now is a runnable language infrastructure with a powerful Eclipse editor for a
brain-dead language :-).

1.3. Try The Editor

Let’s give the editor a try. If you select Run As -> Eclipse Application from the project’s
context menu, you can create a new Eclipse Application. A new Eclipse instance will be
launched and allows to test drive the editor.

Before you can create a file for the sample language, you will have to create a sample
project. Select File -> New -> Project... and choose a project type of your choice, e.g.
Java Project, name it Sample and create a new file in the src folder of the project: From
the context menu of the folder choose New -> File, call it Sample.mydsl and hit Finish.
The newly created editor will open for your language and ask you in a dialog, whether
you want to add the Xtext nature to your project, which should be confirmed. You can
now give the editor a try, e.g. use content assist (Ctrl+Space) to insert the keyword
Hello and see how the input is validated immediately.

11

1.4. Conclusion

In your first five minutes with Xtext, you have learned how to create a new set of
projects. You have run Xtext’s code generation in order to get a fully working language
infrastructure, and finally learned how to test the generated editor.

Next up you should go through the more comprehensive Domain Model Example (§2).
It explains the different concepts of the Xtext grammar language and illustrates how to
customize various aspects of the language.

12

13

2. 15 Minutes Tutorial

In this tutorial we will implement a small domain-specific language to model entities and
properties similar to what you may know from Rails, Grails or Spring Roo. The syntax
is very suggestive :

datatype String

entity Blog {
title: String
many posts: Post

}

entity HasAuthor {
author: String

}

entity Post extends HasAuthor {
title: String
content: String
many comments: Comment

}

entity Comment extends HasAuthor {
content: String

}

After you have installed Xtext on your machine, start Eclipse and set up a fresh
workspace.

2.1. Create A New Xtext Project

In order to get started we first need to create some Eclipse projects. Use the Eclipse
wizard to do so:

File -> New -> Project... -> Xtext -> Xtext project
Choose a meaningful project name, language name and file extension, e.g.

Main project name: org.example.domainmodel
Language name: org.example.domainmodel.Domainmodel
DSL-File extension: dmodel

14

Click on Finish to create the projects.
After you have successfully finished the wizard, you will find three new projects in

your workspace.
org.example.domainmodel Contains the grammar definition and all

runtime components (parser, lexer, linker,
validation, etc.)

org.example.domainmodel.tests Unit tests go here.
org.example.domainmodel.ui The Eclipse editor and all the other work-

bench related functionality.

15

2.2. Write Your Own Grammar

The wizard will automatically open the grammar file Domainmodel.xtext in the editor.
As you can see that it already contains a simple Hello World grammar:

grammar org.example.domainmodel.Domainmodel with
org.eclipse.xtext.common.Terminals

generate domainmodel "http://www.example.org/domainmodel/Domainmodel"

Model:
greetings+=Greeting*;

Greeting:
’Hello’ name=ID ’!’;

Let’s now just replace that grammar definition with the one for our domain model
language:

grammar org.example.domainmodel.Domainmodel with

16

org.eclipse.xtext.common.Terminals

generate domainmodel "http://www.example.org/domainmodel/Domainmodel"

Domainmodel :
(elements += Type)*

;

Type:
DataType | Entity

;

DataType:
’datatype’ name = ID

;

Entity:
’entity’ name = ID (’extends’ superType = [Entity])? ’{’
(features += Feature)*

’}’
;

Feature:
(many ?= ’many’)? name = ID ’:’ type = [Type]

;

Let’s have a more detailed look at what the different grammar rules mean:

1. The first rule in a grammar is always used as the entry or start rule.

Domainmodel :
(elements += Type)*

;

It says that a Domainmodel contains an arbitrary number (*) of Types which will
be added (+=) to a feature called elements.

2. The rule Type delegates to either the rule DataType or (|) the rule Entity.

Type:
DataType | Entity

;

17

3. The rule DataType starts with a keyword ’datatype’, followed by an identifier
which is parsed by a rule called ID. The rule ID is defined in the super grammar
org.eclipse.xtext.common.Terminals and parses a single word, a.k.a identifier. You
can navigate to the declaration by using F3 on the rule call. The value returned
by the call to ID is assigned (=) to the feature name.

DataType:
’datatype’ name = ID

;

4. The rule Entity again starts with the definition of a keyword followed by a name.

Entity :
’entity’ name = ID (’extends’ superType = [Entity])? ’{’
(features += Feature)*

’}’
;

Next up there is the extends clause which is parenthesized and optional (?). Since
the feature named superType is a cross reference (note the square brackets), the
parser rule Entity is not called here, but only a single identifier (the ID-rule)
is parsed. The actual Entity will be resolved during the linking phase. Finally
between curly braces there can be any number of Features, which invokes the next
rule.

5. Last but not least, the rule Feature is defined as follows:

Feature:
(many ?= ’many’)? name = ID ’:’ type = [Type]

;

The keyword many is used to model a multi valued feature in the domain model
DSL. The assignment operator (?=) implies that the feature many is of type
boolean. You are already familiar with the other syntax elements in this parser
rule.

This domain model grammar already uses the most important concepts of Xtext’s
grammar language. you have learned that keywords are written as string literals and a
simple assignment uses a plain equal sign (=) where the multi value assignment used a
plus-equals (+=). We have also seen the boolean assignment operator (?=). Furthermore

18

we saw how a cross reference can be declared and learned about different cardinalities (?
= optional, * = any number, + = at least once). Please consult the Grammar Language
Reference (§14) for more details. Let’s now have a look what you can do with such a
language description.

2.3. Generate Language Artifacts

Now that we have the grammar in place and defined we need to execute the code gener-
ator that will derive the various language components. To do so, locate the file Gener-
ateDomainmodel.mwe2 file next to the grammar file in the package explorer view. From
its context menu, choose

Run As -> MWE2 Workflow.
This will trigger the Xtext language generator. It generates the parser and serializer

and some additional infrastructure code. You will see its logging messages in the Console
View.

19

2.4. Run the Generated IDE Plug-in

We are now able to test the IDE integration. If you select Run -> Run Configura-
tions... from the Eclipse menu, you can choose Eclipse Application -> Launch Runtime
Eclipse. This preconfigured launch shortcut already has appropriate memory settings
and parameters set. Now you can hit Run to start a new Eclipse.

This will spawn a new Eclipse workbench with your newly developed plug-ins in-
stalled. In the new workbench, create a new project of your choice, e.g. File -> New ->
Project... -> Java Project and therein a new file with the file extension you chose in the
beginning (*.dmodel). This will open the generated entity editor. Try it and discover
the default functionality for code completion, syntax highlighting, syntactic validation,
linking errors, the outline view, find references etc.

2.5. Second Iteration: Adding Packages and Imports

After you have created the your first DSL and had a look at the editor, the language
should be refined and incrementally enhanced. The Domain Model language should
support the notion of Packages in order to avoid name clashes and to better fit with the
target environment (Java). A Package may contain Types and other packages. In order
to allow fort names in references, we will also add a way to declare imports.

20

In the end we want to be able to split the previously used model into to distinct files :

// datatypes.dmodel

datatype String

// commons.dmodel

package my.company.common {

entity HasAuthor {
author: String

}
}

21

// blogs.dmodel

package my.company.blog {

import my.company.common.*

entity Blog {
title: String
many posts: Post

}

entity Post extends my.company.common.HasAuthor {
title: String
content: String
many comments: Comment

}

entity Comment extends HasAuthor {
content: String

}
}

Let’s start enhancing the grammar.

1. Since a Domainmodel no longer contains types but packages, too, the entry rule
has to be modified. Furthermore, a common super type for Packages and Types
should be introduced: the AbstractElement.

Domainmodel:
(elements += AbstractElement)*

;

AbstractElement:
PackageDeclaration | Type

;

22

2. A PackageDeclaration in turn looks pretty much as expected. It contains a number
of Imports and AbstractElements. Since Imports should be allowed for the root-
Domainmodel, too, we add them as an alternative to the rule AbstractElement.

PackageDeclaration:
’package’ name = QualifiedName ’{’
(elements += AbstractElement)*

’}’
;

AbstractElement:
PackageDeclaration | Type | Import

;

QualifiedName:
ID (’.’ ID)*

;

The QualifiedName is a little special. It does not contain any assignments. There-
fore, it serves as a data type rule, which returns a String. So the feature name of
a Package is still of type String.

3. Imports can be defined in a very convenient way with Xtext. If you use the name
importedNamespace in a parser rule, the framework will treat the value as an
import. It even supports wildcard and handles them as expected:

Import:
’import’ importedNamespace = QualifiedNameWithWildcard

;
QualifiedNameWithWildcard:
QualifiedName ’.*’?

;

Similar to the rule QualifiedName, QualifiedNameWithWildcard returns a plain
string.

23

4. The last step is to allow fully qualified names in cross references, too. Otherwise
one could not refer to an entity without adding an import statement.

Entity:
’entity’ name = ID

(’extends’ superType = [Entity | QualifiedName])?
’{’
(features += Feature)*

’}’
;

Feature:
(many ?= ’many’)? name = ID ’:’ type = [Type | QualifiedName]

;

Please note that the bar (|) is not an alternative in the context of a cross reference,
but used to specify the syntax of the parsed string.

That’s all for the grammar. It should now read as

grammar org.example.domainmodel.Domainmodel with
org.eclipse.xtext.common.Terminals

generate domainmodel "http://www.example.org/domainmodel/Domainmodel"

Domainmodel:
(elements += AbstractElement)*

;

PackageDeclaration:
’package’ name = QualifiedName ’{’
(elements += AbstractElement)*

’}’
;

AbstractElement:
PackageDeclaration | Type | Import

;

QualifiedName:
ID (’.’ ID)*

;

Import:
’import’ importedNamespace = QualifiedNameWithWildcard

;

24

QualifiedNameWithWildcard:
QualifiedName ’.*’?

;

Type:
DataType | Entity

;

DataType:
’datatype’ name=ID

;

Entity:
’entity’ name = ID

(’extends’ superType = [Entity | QualifiedName])?
’{’
(features += Feature)*

’}’
;

Feature:
(many ?= ’many’)? name = ID ’:’ type = [Type | QualifiedName]

;

You should regenerate the language infrastructure as described in the previous section,
and give the editor another try. You can even split up your model into smaller parts and
have cross-references across file boundaries.

25

26

3. 15 Minutes Tutorial - Extended

After you have developed you first own DSL, the question arises, how the behavior and
the semantics of the language can be customized. Therefore a couple of mini-tutorials
are available, that illustrate common use cases when crafting an own DSL.

These lessons are independent from each other. Each of them will be based on the
language that was build in the first domain model tutorial (§2).

That is, the syntax and the grammar for the language look like this:

package java.lang {
datatype String

}

package my.company.blog {
import java.lang.*
import my.company.common.*

entity Blog {
title: String
many posts: Post

}

entity HasAuthor {
author: String

}

entity Post extends HasAuthor {
title: String
content: String
many comments: Comment

}

entity Comment extends HasAuthor {
content: String

}
}

grammar org.example.domainmodel.Domainmodel with
org.eclipse.xtext.common.Terminals

27

generate domainmodel "http://www.eclipse.org/xtext/example/Domainmodel"

Domainmodel:
(elements += AbstractElement)*

;

PackageDeclaration:
’package’ name = QualifiedName ’{’
(elements += AbstractElement)*

’}’
;

AbstractElement:
PackageDeclaration | Type | Import

;

QualifiedName:
ID (’.’ ID)*

;

Import:
’import’ importedNamespace = QualifiedNameWithWildcard

;

QualifiedNameWithWildcard:
QualifiedName ’.*’?

;

Type:
DataType | Entity

;

DataType:
’datatype’ name=ID

;

Entity:
’entity’ name = ID

(’extends’ superType = [Entity | QualifiedName])?
’{’
(features += Feature)*

’}’
;

Feature:
(many ?= ’many’)? name = ID ’:’ type = [Type | QualifiedName]

;

28

3.1. Writing a Code Generator With Xtend

As soon as you generate the Xtext artifacts for a grammar, a code generator stub will
be put into the runtime project of your language. Let’s dive into Xtend and see how you
can integrate your own code generator with Eclipse.

In this lesson you will generate Java Beans for entities that are defined in the domain
model DSL. For each Entity, a Java class is generated and each Feature will lead to a
private field in that class and public getters and setters. For the sake of simplicity, we
will use fully qualified names all over the generated code.

package my.company.blog;

public class HasAuthor {
private java.lang.String author;

public java.lang.String getAuthor() {
return author;

}

public void setAuthor(java.lang.String author) {
this.author = author;

}
}

First of all, locate the file DomainmodelGenerator.xtend in the package org.example.domainmodel.generator.
This Xtend class is used to generate code for your models in the standalone scenario and
in the interactive Eclipse environment.

package org.example.domainmodel.generator

import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.IGenerator
import org.eclipse.xtext.generator.IFileSystemAccess

class DomainmodelGenerator implements IGenerator {
override void doGenerate(Resource resource, IFileSystemAccess fsa) {
}

}

Let’s make the implementation more meaningful and start writing the code generator.
The strategy is to find all entities within a resource and trigger code generation for each
one.

29

1. First of all, you will have to filter the contents of the resource down to the defined
entities. Therefore we need to iterate a resource with all its deeply nested elements.
This can be achieved with the method getAllContents(). To use the resulting
TreeIterator in a for loop, we use the extension method toIterable() from the
built-in library class IteratorExtensions.

class DomainmodelGenerator implements IGenerator {
override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContents.toIterable.filter(Entity)) {
...

}
}

}

2. Now let’s answer the question, how we determine the file name of the Java class,
that each Entity should yield. This information should be derived from the qual-
ified name of the Entity since Java enforces this pattern. The qualified name
itself has to be obtained from a special service that is available for each lan-
guage. Fortunately, Xtend allows to reuse that one easily. We simply inject the
IQualifiedNameProvider into the generator.

@Inject extension IQualifiedNameProvider

This allows to ask for the name of an entity. It is straightforward to convert the
name into a file name:

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContents.toIterable.filter(Entity)) {
fsa.generateFile(
e.fullyQualifiedName.toString("/") + ".java",
e.compile)

}
}

30

3. The next step is to write the actual template code for an entity. For now, the
function Entity.compile does not exist, but it is easy to create it:

def compile(Entity e) ’’’
package ?e.eContainer.fullyQualifiedName?;

public class ?e.name? {
}

’’’

4. This small template is basically the first shot at a Java-Beans generator. However,
it is currently rather incomplete and will fail, if the Entity is not contained in
a package. A small modification fixes this. The package-declaration has to be
wrapped in an IF expression:

def compile(Entity e) ’’’
?IF e.eContainer.fullyQualifiedName != null?
package ?e.eContainer.fullyQualifiedName?;

?ENDIF?

public class ?e.name? {
}

’’’

Let’s handle the superType of an Entity gracefully, too by using another IF expres-
sion:

def compile(Entity e) ’’’
?IF e.eContainer.fullyQualifiedName != null?
package ?e.eContainer.fullyQualifiedName?;

?ENDIF?

public class ?e.name? ?IF e.superType != null
?extends ?e.superType.fullyQualifiedName? ?ENDIF?{

}
’’’

31

5. Even though the template will compile the Entities without any complains, it still
lacks support for the Java properties, that each of the declared features should
yield.
For that purpose, you have to create another Xtend function that compiles a single
feature to the respective Java code.

def compile(Feature f) ’’’
private ?f.type.fullyQualifiedName? ?f.name?;

public ?f.type.fullyQualifiedName? get?f.name.toFirstUpper?() {
return ?f.name?;

}

public void set?f.name.toFirstUpper?(?f.type.fullyQualifiedName? ?f.name?) {
this.?f.name? = ?f.name?;

}
’’’

As you can see, there is nothing fancy about this one. Last but not least, we have
to make sure that the function is actually used.

def compile(Entity e) ’’’
?IF e.eContainer.fullyQualifiedName != null?
package ?e.eContainer.fullyQualifiedName?;

?ENDIF?

public class ?e.name? ?IF e.superType != null
?extends ?e.superType.fullyQualifiedName? ?ENDIF?{

?FOR f:e.features?
?f.compile?

?ENDFOR?
}

’’’

The final code generator looks pretty much like the following code snippet. Now you
can give it a try! Launch a new Eclipse Application (Run As -> Eclipse Application
on the Xtext project) and create a dmodel file in a Java Project. Now simply create a
new source folder src-gen in the that project and see how the compiler will pick up your
sample Entities and generate Java code for them.

package org.example.domainmodel.generator

32

import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.IGenerator
import org.eclipse.xtext.generator.IFileSystemAccess
import org.example.domainmodel.domainmodel.Entity
import org.example.domainmodel.domainmodel.Feature
import org.eclipse.xtext.naming.IQualifiedNameProvider

import com.google.inject.Inject

class DomainmodelGenerator implements IGenerator {

@Inject extension IQualifiedNameProvider

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContents.toIterable.filter(Entity)) {
fsa.generateFile(
e.fullyQualifiedName.toString("/") + ".java",
e.compile)

}
}

def compile(Entity e) ’’’
?IF e.eContainer.fullyQualifiedName != null?
package ?e.eContainer.fullyQualifiedName?;

?ENDIF?

public class ?e.name? ?IF e.superType != null
?extends ?e.superType.fullyQualifiedName? ?ENDIF?{

?FOR f:e.features?
?f.compile?

?ENDFOR?
}

’’’

def compile(Feature f) ’’’
private ?f.type.fullyQualifiedName? ?f.name?;

public ?f.type.fullyQualifiedName? get?f.name.toFirstUpper?() {
return ?f.name?;

}

public void set?f.name.toFirstUpper?(?f.type.fullyQualifiedName? ?f.name?) {
this.?f.name? = ?f.name?;

}
’’’

}

If you want to play around with Xtend, you can try to use the Xtend tutorial which

33

can be materialized into your workspace. Simply choose New -> Example -> Xtend
Examples -> Xtend Introductory Examples and have a look at Xtend’s features. As
a small exercise, you could implement support for the many attribute of a Feature or
enforce naming conventions, e.g. field names should start with an underscore.

3.2. Unit Testing the Language

Automated tests are crucial for the maintainability and the quality of a software product.
That is why it is strongly recommended to write unit tests for your language, too. The
Xtext project wizard creates a test project for that purpose. It simplifies the setup
procedure both for the Eclipse agnostic tests and the UI tests for Junit4.

This tutorial is about testing the parser and the linker for the Domainmodel. It
leverages Xtend to write the test case.

1. First of all, a new Xtend class has to be created. Therefore, choose the src folder
of the test plugin, and select New -> Xtend Class from the context menu. Provide
a meaningful name and enter the package before you hit finish.
The core of the test infrastructure is the XtextRunner and the language specific
IInjectorProvider. Both have to be provided by means of class annotations:

import org.eclipse.xtext.junit4.XtextRunner
import org.example.domainmodel.DomainmodelInjectorProvider

@InjectWith(DomainmodelInjectorProvider)
@RunWith(XtextRunner)
class ParserTest {
}

34

2. The actual test case is pretty straight forward with Xtend. The utility class
org.eclipse.xtext.junit4.util.ParseHelper allows to parse an arbitrary string into a
Domainmodel. The model itself can be traversed and checked afterwards. A static
import of Assert leads to concise and readable test cases.

import org.eclipse.xtext.junit4.util.ParseHelper
import static org.junit.Assert.*

...
@Inject

ParseHelper<Domainmodel> parser

@Test
def void parseDomainmodel() {
val model = parser.parse(
"entity MyEntity { parent: MyEntity }")

val entity = model.elements.head as Entity
assertSame(entity, entity.features.head.type)

}

3. After saving the Xtend file, it is time to run the test. Select Run As -> JUnit Test
from the editor’s context menu.

3.3. Creating Custom Validation Rules

One of the main advantages of DSLs is the possibility to statically validate domain
specific constraints. This can be achieved by means of static analysis. Because this is
a common use case, Xtext provides a dedicated hook for this kind of validation rules.
In this lesson, we want to ensure that the name of an Entity starts with an upper-case
letter and that all features have distinct names across the inheritance relationship of an
Entity.

Try to locate the class DomainmodelValidator in the package org.eclipse.xtext.example.validation.
It can be found in the language plug-in. Defining the constraint itself is only a matter
of a few lines of code:

@Check
def void checkNameStartsWithCapital(Entity entity) {
if (!Character::isUpperCase(entity.getName().charAt(0))) {
warning("Name should start with a capital",
DomainmodelPackage$Literals::TYPE__NAME);

}
}

35

Any name for the method will do. The important thing is the Check annotation that
advises the framework to use the method as a validation rule. If the name starts with a
lower case letter, a warning will be attached to the name of the Entity.

The second validation rule is straight-forward, too. We traverse the inheritance hier-
archy of the Entity and look for features with equal names.

@Check
def void checkFeatureNameIsUnique(Feature f) {

var superEntity = (f.eContainer() as Entity).getSuperType();
while (superEntity != null) {

for (other : superEntity.getFeatures()) {
if (f.getName().equals(other.getName())) {

error("Feature names have to be unique", DomainmodelPackage$Literals::FEATURE__NAME);
return;

}
}
superEntity = superEntity.getSuperType();

}
}

The sibling features, that are defined in the same entity, are automatically validated
by the Xtext framework. Therefore, they do not have to be checked twice.

36

4. Five simple steps to your JVM language

In this tutorial we will basically implement the domain model language again, but this
time we will make use of the special JVM support shipped with Xtext 2.x. This kind of
language really is a sweet spot for DSLs, so feel free to use this as a blueprint and add
your project specific features later on.

The revised domain model language supports expressions and cross links to Java types.
It is directly translated to Java source code. The syntax should look very familiar. Here
is an example:

import java.util.List

package my.model {

entity Person {
name: String
firstName: String
friends: List<Person>
address : Address
op getFullName() : String {
return firstName + " " + name;

}

op getFriendsSortedByFullName() : List<Person> {
return friends.sortBy[f | f.fullName]

}
}

entity Address {
street: String
zip: String
city: String

}
}

As you can see, it supports all kinds of advanced features such as Java generics and
full expressions even including lambda expressions. Don’t panic you will not have to
implement these concepts on your own but will reuse a lot of helpful infrastructure to
build the language.

37

We will now walk through the five! little steps needed to get this language fully
working including its compiler.

After you have installed Xtext on your machine, start Eclipse and set up a fresh
workspace.

4.1. Step One: Create A New Xtext Project

In order to get started we first need to create some Eclipse projects. Use the Eclipse
wizard to do so:

File -> New -> Project... -> Xtext -> Xtext Project
Choose a meaningful project name, language name and file extension, e.g.

Main project name: org.example.domainmodel
Language name: org.example.domainmodel.Domainmodel
DSL-File extension: dmodel
Click on Finish to create the projects.
After you have successfully finished the wizard, you will find three new projects in

your workspace.
org.example.domainmodel Contains the grammar definition and all

runtime components (parser, lexer, linker,
validation, etc.)

org.example.domainmodel.tests Unit tests go here.
org.example.domainmodel.ui The Eclipse editor and all the other work-

bench related functionality.

4.2. Step Two: Write the Grammar

The wizard will automatically open the grammar file Domainmodel.xtext in the editor.
As you can see it already contains a simple Hello World grammar:

grammar org.example.domainmodel.Domainmodel with
org.eclipse.xtext.common.Terminals

generate domainmodel "http://www.example.org/domainmodel/Domainmodel"

Model:
greetings+=Greeting*;

Greeting:
’Hello’ name=ID ’!’;

Please replace that grammar definition with the one for our language:

38

grammar org.example.domainmodel.Domainmodel with
org.eclipse.xtext.xbase.Xbase

generate domainmodel "http://www.example.org/domainmodel/Domainmodel"

Domainmodel:
importSection=XImportSection?
elements+=AbstractElement*;

39

AbstractElement:
PackageDeclaration | Entity;

PackageDeclaration:
’package’ name=QualifiedName ’{’
elements+=AbstractElement*

’}’;

Entity:
’entity’ name=ValidID
(’extends’ superType=JvmTypeReference)? ’{’
features+=Feature*

’}’;

Feature:
Property | Operation;

Property:
name=ValidID ’:’ type=JvmTypeReference;

Operation:
’op’ name=ValidID
’(’(params+=FullJvmFormalParameter

40

(’,’ params+=FullJvmFormalParameter)*)?’)’
’:’ type=JvmTypeReference
body=XBlockExpression;

Let’s have a look at what the different grammar constructs mean:

1.
grammar org.example.domainmodel.Domainmodel with

org.eclipse.xtext.xbase.Xbase

The first thing to note is that instead of inheriting from the
usual org.eclipse.xtext.common.Terminals grammar, we make use of
org.eclipse.xtext.xbase.Xbase.
Xbase allows us to easily reuse and embed modern, statically typed expressions as
well as Java type signatures in our language.

2.
Domainmodel:
importSection=XImportSection?
elements+=AbstractElement*;

The first rule in a grammar is always used as the entry or start rule.
It says that a Domainmodel contains an optional import section and an arbitrary
number (*) of AbstractElements which will be added (+=) to a feature called
elements. The concept of XImportSection is part of org.eclipse.xtext.xbase.Xbase
and comes with tool support and syntax like you know it from Java.

3.
AbstractElement:
PackageDeclaration | Entity;

The rule AbstractElement delegates to either the rule PackageDeclaration or the
rule Entity.

41

4.
PackageDeclaration:
’package’ name=QualifiedName ’{’
elements+=AbstractElement*

’}’;

A PackageDeclaration is used to declare a name space which can again contain
any number of AbstractElements.
Xtext has built-in support for qualified names and scoping based on the hierar-
chy of the produced model. The default implementation will add the package
names as the prefix to contained entities and nested packages. The qualified name
of an Entity ’Baz’ which is contained in a PackageDeclaration ’foo.bar’ will be
’foo.bar.Baz’. In case you do not like the default behavior you will need to use a
different implementation of IQualifiedNameProvider.

5.
Entity:
’entity’ name=ValidID
(’extends’ superType=JvmTypeReference)? ’{’
features+=Feature*

’}’;

The rule Entity starts with the definition of a keyword followed by a name.
The extends clause which is parenthesized and optional (note the trailing ?) makes
use of the rule JvmTypeReference which is defined in a super grammar. JvmType-
Reference defines the syntax for full Java-like type names. That is everything
from simple names, over fully qualified names to fully-fledged generics, including
wildcards, lower bounds and upper bounds.
Finally between curly braces there can be any number of Features, which leads us
to the next rule.

6.
Feature:
Property | Operation;

The rule Feature delegates to either a Property or an Operation.

7.
Property:
name=ValidID ’:’ type=JvmTypeReference;

A Property has a name and makes again use of the inherited rule JvmTypeRefer-
ence.

42

8.
Operation:
’op’ name=ValidID
’(’(params+=FullJvmFormalParameter
(’,’ params+=FullJvmFormalParameter)*)?’)’

’:’ type=JvmTypeReference
body=XBlockExpression;

Operations also have a signature as expected. Note that also for formal parameters
we can reuse a rule from the super grammar. The Operation’s body, that is the
actual implementation is defined by the rule XBlockExpression which is one of
the most often used entry rules from Xbase. A block consist of any number of
expressions between curly braces such as:

{
return "Hello World" + "!"

}

4.3. Step Three: Generate Language Artifacts

Now that we have the grammar in place and defined we need to execute the code gen-
erator that will derive the various language components. To do so right click in the
grammar editor. From the opened context menu, choose

Run As -> Generate Xtext Artifacts.
This will trigger the Xtext language generator. It generates the parser and serializer

and some additional infrastructure code. You will see its logging messages in the Console
View.

4.4. Step Four: Define the Mapping to JVM Concepts

The syntax alone is not enough to make the language work. We need to map the domain
specific concepts to some other language in order to tell Xtext how it is executed. Usually
you define a code generator or an interpreter for that matter, but languages using Xbase
can omit this step and make use of the IJvmModelInferrer.

The idea is that you translate your language concepts to any number of Java types
(JvmDeclaredType). Such a type can be a Java class, Java interface, Java annotation
type or a Java enum and may contain any valid members. In the end you as a language
developer are responsible to create a correct model according to the Java language.

By mapping your language concepts to Java elements, you implicitly tell Xtext in
what kind of scopes the various expressions live and what return types are expected
from them. Xtext 2.x also comes with a code generator which can translate that Java

43

model into readable Java code, including the expressions.
If you have already triggered the ’Generate Xtext Artifacts’ action, you should find a

stub called org/example/domainmodel/jvmmodel/DomainmodelJvmModelInferrer.xtend
in the src folder. Please replace its contents with the following :

package org.example.domainmodel.jvmmodel

import com.google.inject.Inject
import org.example.domainmodel.domainmodel.Entity
import org.example.domainmodel.domainmodel.Operation
import org.example.domainmodel.domainmodel.Property
import org.eclipse.xtext.naming.IQualifiedNameProvider
import org.eclipse.xtext.xbase.jvmmodel.AbstractModelInferrer
import org.eclipse.xtext.xbase.jvmmodel.IJvmDeclaredTypeAcceptor
import org.eclipse.xtext.xbase.jvmmodel.JvmTypesBuilder

44

class DomainmodelJvmModelInferrer extends AbstractModelInferrer {

/**
* a builder API to programmatically create Jvm elements
* in readable way.
*/
@Inject extension JvmTypesBuilder

@Inject extension IQualifiedNameProvider

def dispatch void infer(Entity element,
IJvmDeclaredTypeAcceptor acceptor,
boolean isPrelinkingPhase) {

acceptor.accept(element.toClass(element.fullyQualifiedName)) [
documentation = element.documentation
if (element.superType != null)
superTypes += element.superType.cloneWithProxies

for (feature : element.features) {
switch feature {

Property : {
members += feature.toField(feature.name, feature.type)
members += feature.toGetter(feature.name, feature.type)
members += feature.toSetter(feature.name, feature.type)

}

Operation : {
members += feature.toMethod(feature.name, feature.type) [
documentation = feature.documentation
for (p : feature.params) {
parameters += p.toParameter(p.name, p.parameterType)

}
body = feature.body

]
}

}
}

]
}

}

Let’s go through the code to get an idea of what is going on. (Please also refer to the
JavaDoc of the used API for details, especially the JvmTypesBuilder).

45

1.
def dispatch void infer(Entity element,

IAcceptor<JvmDeclaredType> acceptor,
boolean isPrelinkingPhase) {

Using the dispatch keyword makes sure that the method is called for instances of
type Entity only. Have a look at the Xtend documentation on polymorphic dis-
patch to understand Xtend’s dispatch functions. Extending AbstractModelInferrer
makes sure we don’t have to walk the syntax model on our own.

2.
acceptor.accept(element.toClass(element.fullyQualifiedName)) [
...
]

Every JvmDeclaredType you create in the model inference needs to be passed to
the acceptor in order to get recognized.
The extension method toClass comes from JvmTypesBuilder. That class provides
a lot of convenient extension methods, which help making the code extremely
readable and concise.
It is important to understand that the creation and assignment of a qualified name,
is done in an early phase where the compiler collects all global symbols. You cannot
resolve type references at this point.

3. The second argument to accept is a lambda block, that contains further initial-
ization of the created Java type. Only in this block you are allowed to do type
reference resolution. Also this is the place where you add members and put the
XExpressions into context.
Let’s see what we do in the initialization block in detail:

4.
documentation = element.documentation

Here we assign some JavaDoc to the newly created element. The as-
signment is translated to an invocation of the method JvmTypesBuilder
#setDocumentation(JvmIdentifiableElement element,String documentation) and
element.documentation is in fact calling the extension method JvmTypesBuilder
#getDocumentation(EObject element)
Xtend’s extension methods are explained in detail on the Xtend website.

46

http://www.eclipse.org/xtend/documentation.html#polymorphicDispatch
http://www.eclipse.org/xtend/documentation.html#extensionMethods

5.
if (element.superType != null)

superTypes += entity.superType.cloneWithProxies

Set the superType on the inferred element. Note that we have to clone the type ref-
erence from the element.superType. If we did not do that, the type reference would
be automatically removed from the element, as superType is an EMF containment
reference.

6.
for (feature : element.features) {
switch feature {
Property : {
// ...

}
Operation : {
// ...

}
}

}

When iterating over a list of heterogeneous types, the switch expression with its
type guards comes in handy. If feature is of type Property the first block is executed.
If it is an Operation the second block is executed. Note that the variable feature
will be implicitly casted to the respective type within the blocks.

7.
Property : {
members += feature.toField(feature.name, feature.type)
members += feature.toSetter(feature.name, feature.type)
members += feature.toGetter(feature.name, feature.type)

}

For each Property we create a field as well as a corresponding getter and setter.

47

8.
Operation : {
members += feature.toMethod(feature.name, feature.type) [
documentation = feature.documentation
for (p : feature.params) {
parameters += p.toParameter(p.name, p.parameterType)

}
body = feature.body

]
}

Operations are being mapped to a corresponding Java method. The documentation
is translated and the parameters are added within the initializer.
The line body = feature.body registers the Operation’s expression as the body
of the newly created Java method. This defines the scope of the expression. The
frameworks deduces the visible fields and parameters as well as the expected return
type from that information.

4.5. Step Five : Try the Editor!

We are now able to test the IDE integration, by spawning a new Eclipse using our plug-
ins. To do so just use the launch shortcut called ”Launch Runtime Eclipse”, clicking on
the green play button in the tool bar.

In the new workbench, create a Java project (File -> New -> Project... -> Java
Project. Xbase relies on a small runtime library on the class path. To add this, right-
click on the project and go to Java Build Path -> Libraries -> Add Library and choose
Xtend Library. Then create a new file with the file extension you chose in the beginning
(*.dmodel) in the source folder of the Java project. This will open the generated entity
editor. Try it and discover the rich functionality it provides. You should also have a
look at the preferences of your language to find out what can be individually configured
to your users needs.

Have fun!

48

49

Part II.

Seven JVM Languages Built With
Xbase

50

5. Introduction

Building a domain-specific language (DSL) for structural parts of an application has
always been rather easy with Xtext. But structure alone is not sufficient in many cases.
When it comes to the behavioral aspects users often fall back to implementing them in
Java. The reasons are obvious: expressions and statements are hard to get right and
extremely complex and therefore costly to implement.

This document introduces and explains a new API, which allows reusing predefined
language constructs such as type references, annotations and fully featured expressions
anywhere in your languages. You not only reuse the grammar but the complete imple-
mentation including a compiler, interpreter, the whole Java type system and a tight IDE
integration. And the best part is, that it is relatively easy to do so. It is actually just
two steps:

5.1. Write the Grammar

Using the traditional Xtext grammar language you freely describe the syntax of your
language. The specialty for JVM languages is, that you inherit from an abstract grammar
org.eclipse.xtext.xbase.Xbase, which predefines the syntax for the reusable parts. You
do not need to use all of them directly and you can of course change the syntax or add
new concepts, as it seems fit.

5.2. Map to Java

Having the grammar defined, you now need to tell Xtext what your language concepts
mean in terms of Java constructs. For that purpose you use a so-called model inferrer, a
special API that allows you to create any number of Java classes, interfaces or members
from your DSL. This hook not only defines how your language is translated to Java, but
also defines the scope of the embedded expressions. The expressions from your language
’live’ in the context you give them. If you want an expression to have access to certain
local variables, just put it into a method with appropriate parameters or use instance
fields if they work better.

While in plain Xtext you would usually customize a bunch of further services to fit
your needs, Xbase already has JVM model aware implementations almost all of them.
For example, a generic code generator generates the Java code directly from the inferred
model. The same way, Xbase already integrates your language with JDT to an extend
that customizations beyond the JVM model inferrer will only be necessary for very

51

special cases. You can naturally mix Java and DSL code in the same application without
any barriers.

The inferred model also reveals your DSL constructs to other JVM languages. The
Java type system is used as a common hub to integrate arbitrary languages with each
other. You can for instance call templates (§11) directly from a script (§6) and vice
versa. You do not even need to generate the equivalent Java code; everything is based
on the Java types you create in the model inferrer.

To illustrate the power and flexibility of these two abstractions, we have built seven
example languages using them:

• A simple scripting language (§6)

• A Grade-like build DSL (§7)

• A DSL for statically-typed MongoDB documents (§8)

• A Guice modules DSL (§9)

• A Playframework-like HTTP routing language (§10)

• A template language (§11)

• A Logo-like programming environment for educational purposes (§12)

Each language is very simple and focuses on the value a DSL can add to the respec-
tive viewpoint. It is meant to give you an idea of what is possible without being a
complete practical solution. Yet the languages are flexible and come with powerful core
abstractions. We also covered different technical aspects of customizing to the language
infrastructure. Some languages have special syntax coloring, others provide customized
outline views or content assist. All aspects of a language are still fully customizable
when using Xbase.

5.3. CAUTION: This is Provisional API

Please be aware that some of the new API covered in this document is not yet finalized
and will likely be improved in future releases in incompatible ways. Usages of such API
are marked with a warning.

5.4. Common Requirements

To run any of the examples, you will need Eclipse 3.6 or better for your platform. In
addition, you have to install Xtend and of course Xtext 2.7.

If you prefer a simple all-inclusive installation, consider downloading the latest Xtext
distribution.

Additional requirements are mentioned in the Running the Example section of each
chapter.

52

http://www.eclipse.org/downloads
http://www.eclipse.org/xtend/download.html
http://www.eclipse.org/Xtext/download.html
http://www.eclipse.org/Xtext/download.html
http://www.eclipse.org/Xtext/download.html

5.5. Getting the Code

You can get the source code for all languages from the github repository at github.com/xtext-
dev/seven-languages-xtext. The repository contains two folders languages and examples.
Download the plug-ins from languages into the root workspace and the examples into
the runtime workspace spawned from the root one using Run > Run Configurations...
> Eclipse Application > Run (<language>).

Each language consists of several Eclipse projects
org.xtext.<language> The base infrastructure
org.xtext.<language>.ui The editor based on Eclipse
org.xtext.<language>.tests Tests for the language
org.xtext.<language>.lib Runtime library
org.xtext.<language>.example Examples for using the language
Some of the languages do not include all of these plug-ins but the general structure is

always the same.

5.6. A Short Xtend Primer

Any general code in the examples is implemented in Xtend. Xtend is a more expressive
and less verbose way to implement Java applications. It is 100% interoperable with Java
APIs and compiles to readable Java code. In addition, it uses the same expressions
that we use in our example languages. In fact it is built with the very same API that is
described in this document. This should give you a taste of how powerful JVM-languages
built with Xtext can actually be.

Xtend is designed to be easy to learn for Java developers. In this section we will
shortly describe the most important language features that were used in our examples.
For a full description of the Xtend language, please refer to the Xtend documentation.

Just like a Java file, an Xtend file starts with a package declaration and an import
section followed by one or more class declarations. Semicolons are optional. All types
are public by default. Xtend classes can extend other classes and implement interfaces
just like in Java. It does not make any difference whether they were originally declared
in Xtend or in Java.

JavaBean properties can be accessed directly by their name. The access will be auto-
matically mapped to the appropriate accessor method. That means you can write

println(foo.bar) // instead of println(foo.getBar())
foo.bar = baz // instead of foo.setBar(baz)
foo.fooBars += foobar // instead of foo.getFooBars().add(foobar)

Empty parentheses on method or constructor calls can be skipped.
Methods are introduced with the keyword def or override if they override/implement a

super type’s method. Methods are public if not specified otherwise. The value of the last

53

https://github.com/xtext-dev/seven-languages-xtext.git
https://github.com/xtext-dev/seven-languages-xtext.git
http://www.xtend-lang.org
http://www.xtend-lang.org/documentation

expression is returned if no explicit return expression is used and the method’s return
type is not void.

Variables are declared with the keywords val (final) or var (non-final). Field declara-
tions can use the same syntax as in Java.

Xtend is statically typed, but you do not have to specify the type in a declaration if
it can be inferred from the context:

val x = newArrayList(’foo’, ’bar’, ’baz’) // x is of type List<String>
def foo() { // equivalent to def int foo()...
1

}

The methods of fields marked as extension are callable in extension syntax. That
means, you can put the first argument in front as if it were the receiver of the call, e.g.

// assume the class Foo defines a method foo(Baz)
extension Foo theFoo

def bar(Baz baz)?{
baz.foo // calls theFoo.foo(baz)

}

Static methods can be put on the extension scope with a static extension import, e.g.

import static extension java.util.Collections.*
...
val foo = singleton(’foo’) // calls Collections.<String>singleton(’foo’)

In addition to Java’s this, you can define another implicit receiver variable named it.
As with this, you can omit it in feature calls, i.e.

class Foo {
def foo(Bar it) {
foo // will call it.foo() or if that doesn’t exist this.foo()

}
}

Xtend provides lambda expressions. These are anonymous functions in square brack-
ets.

54

[String foo, String bar |?foo + bar]
// a function (String foo, String bar) { foo + bar }

As this is a bit bulky, there are more rules to make working with lambdas more
attractive:

1. When a lambda expression is the last argument in a method call, it can be put
behind the closing parentheses.

2. Lambdas are automatically coerced to interfaces with a single function. Parameter
types will be inferred.

3. If you skip the declaration of the only parameter, it will be implicitly called it.

new Thread [println("Hello concurrent world")]
// lambda will be coerced to a java.lang.Runnable

val list = #[’fooooo’, ’fo’, ’foo’] // #[] delimits a list literal
list.sortBy[length]
// lambda is coerced to a function (String)=>Comparable
// equivalent to list.sortBy[String it | it.length]

Also noteworthy is the template expression, which allows defining interpolated multi-
line string literals. In addition, the template expressions has intelligent whitespace han-
dling and supports a special FOR and IF construct, which is far better readable in this
context. In model inferrers, the template expressions are enhanced further to support
type literals, automatically adding an import to the generated Java file.

We most often use this expression in the examples to generate some synthetic Java
boilerplate code. Here is an example from the http routing language (§10):

’’’
String url = request.getRequestURL().toString();
?FOR route : routes?
{
//java.util.regex.Matcher will be imported in the generated Java file
?Matcher? _matcher = _pattern?route.index?.matcher(url);
if (_matcher.find()) {
?FOR variable : route.url.variables?

String ?variable.name? = _matcher.group(?variable.index + 1?);
?ENDFOR?
?IF route.condition != null?
if (?route.nameOfRouteMethod?Condition(request, response
?FOR v : route.url.variables

55

BEFORE ", "
SEPARATOR ", "??v.name??ENDFOR?))

?ENDIF?
?route.nameOfRouteMethod?(request, response
?FOR v : route.url.variables?, ?v.name??ENDFOR?);

}
}

?ENDFOR?
’’’

56

6. Scripting Language

The scripting language allows writing code without any preludes such as package, class
or method declarations. Just open a file and start coding. It’s the simplest of the seven
languages and is therefore a good starting point.

6.1. Overview

As you can see the language is straightforward: All you can do is write expressions. The
expressions you see are the same as in Xtend and they are defined in its own grammar
(called Xbase). They are syntactically very close to Java, but feature advanced concepts
like lambda expressions and operator overloading. They support local type inference
so you do not have to write types everywhere like in Java, but the expressions are still

57

statically typed. For a Java developer, the code should be self-explanatory. The Xbase
expression language is exhaustively covered in the Xtext documentation.

A script is compiled to a Java class with one main method. That is the script

println(’Hello World!’)

is compiled to the following Java source code

package my.first;

public class Application {
public static void main(String... args) {
System.out.println("Hello World!");

}
}

Note that the core language infrastructure such as the parser, linker and compiler does
not depend on Eclipse, but the compilation is integrated with Eclipse for convenience
reasons. All 7 languages can be parsed, compiled and executed without Eclipse. We
could also make use of the interpreter, which might make more sense for a scripting
language. How to use and integrate the interpreter is explained in the section describing
the chapter 12 language.

6.2. Running the Example

Make sure you have the projects org.xtext.scripting and org.xtext.scripting.ui?in your
workspace. Then start a new Eclipse by choosing Run > Run Configurations... > Eclipse
Application > Run (org.xtext.scripting). Import the project org.xtext.scripting.examples
into the newly spawned workspace using the Import existing projects into workspace
wizard.

6.3. Grammar

To build a language with Xtext, you first have to define a grammar. As opposed to
other parser generators, an Xtext grammar defines both, the lexical structure of the
language and an object model (the AST or semantic model) that is build during parsing.
For a more detailed description of the Xtext grammar language, please see the Xtext
documentation.

The grammar for our DSL is rather simple. We inherit from org.eclipse.xtext.xbase.Xbase
to get the syntax of the expressions. As we want to refer to the type XBlockExpression,

58

http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html

we have to import Xbase’s Ecore model. The single type inferred from this grammar
goes into the Ecore model simpleExpressions.

grammar org.xtext.scripting.Scripting with org.eclipse.xtext.xbase.Xbase

generate scripting "http://www.xtext.org/scripting/Scripting"
import "http://www.eclipse.org/xtext/xbase/Xbase"

Script returns XBlockExpression:
{Script}
(expressions+=XExpressionInsideBlock ’;’?)*;

The main rule Script is defined to produce an object of type Script, which is a subtype
of XBlockExpression. A block expression simply contains any number of expressions.
The rule XExpressionInsideBlock is defined in the Xbase grammar. Usually block ex-
pressions are surrounded by curly braces, but of course we do not want to force anybody
to write curly braces at the beginning and the end of a simple script.

6.4. Translation to Java

To make our language executable, we have to define how its concepts relate to Java
concepts. In Xtext, this is defined by the IJvmModelInferrer. The language generator
automatically generates an Xtend stub for it. Nevertheless, it is up to the language
developer to implement the infer() method.

This hook is not only used to explain how to generate Java code, but also to give
expressions a proper scope and to make your DSL constructs visible by other JVM lan-
guages. The Java type system is used as a common hub to integrate arbitrary languages
with each other.

The inferrer is written in Xtend, if you are not yet familiar with it, you should read
at least the Xtend Primer (§5.6) first.

The JVM model inferrer code for the scripting language looks like this:

class ScriptingJvmModelInferrer extends AbstractModelInferrer {

@Inject extension JvmTypesBuilder

def dispatch void infer(Script script,
IJvmDeclaredTypeAcceptor acceptor,
boolean isPreIndexingPhase) {

val className = script.eResource.URI.trimFileExtension.lastSegment
acceptor.accept(script.toClass(className))[

// the class gets one main method
members += script.toMethod(’main’, typeRef(Void.TYPE)) [

59

parameters += script.toParameter("args", typeRef(String).addArrayTypeDimension)
static = true

varArgs = true
// Associate the script as the body of the main method
body = script

]
]

}
}

It maps each script to one Java class with a main method. Note the use of script as
a receiver for all the factory methods. When creating a Java element, you need to pass
a context so Xtext knows what the origin of a Java element is. This is used throughout
the workbench for features like find references, call hierarchies, rename refactoring and
more.

As the whole script is an expression it is associated with the body of the main method.
That association is important since it defines the scope of the expression. It includes the
variables, fields and methods that are visible as well as which return type is expected.

In this case void is expected, so you would get an error when using a return expression.
Also the parameter args defined in the main method is now on the scope. So you could
write the following script:

for (arg : args)
println(’-- ’+arg)

As you can imagine, this is a fairly powerful way to put things on the scope implicitly.

60

7. Build Language

Build tools like Ant or Gradle decompose the build process into a set of tasks. A task
can stand for a compilation step, copying some files, bundling, running tests etc. The
order of execution is calculated from the dependencies of the defined tasks.

This build language combines the declarative approach of defining tasks and depen-
dencies with the full power of a modern expression language. It is a bit similar to Ant
but statically typed and with very good IDE support.

7.1. Overview

The above screenshot shows an exemplary build script. A script has a couple of parame-
ters. The tasks define dependencies to other tasks. What happens if the task is executed
is defined in a block within curly braces.

61

http://www.gradle.org/

A build script can be run from the command line, assigning values to the parameters
in the syntax myscript –<paramName> <value>.

We have put most functionality of the language in the runtime library: Detecting
the order of execution, parsing parameters, etc. The language itself focusses on the
structural parts, and leaves the actions to Xbase. This allows both us and future users
to add new tasks as library methods instead of hard-coding them in the language.

7.2. Running the Example

In the runtime workspace, open the BuildExample.build in the editor. The example
project comes with some sample java code to compile in the example-project folder.
Choose Run as > Build Task from the context menu of any task to execute it.

7.3. Grammar

The grammar of the DSL is once again quite slim:

grammar org.xtext.builddsl.BuildDSL with org.eclipse.xtext.xbase.Xbase

generate build "http://www.xtext.org/builddsl"

BuildFile:
("package" name=QualifiedName)?
importSection=XImportSection?
declarations+=Declaration*;

Declaration:
Task | Parameter;

Parameter:
’param’ type=JvmTypeReference? name=ValidID (’=’ init=XExpression)?;

Task:
’task’ name=ValidID
(’depends’ depends+=[Task|ValidID] (’,’ depends+=[Task|ValidID])*)?
action=XBlockExpression;

A BuildFile starts with a package declaration. The generated Java class will be located
in this namespace. The next part is an importSection. Since version 2.4, Xbase includes
extensive tooling to validate and organize import statements. To make this available
in your language, you just have to include an XImportSection as in this example. The
imports are followed by the Declarations. A Declaration can be a Task or a Parameter. A
Parameter can declare a type and an initialization expression. Tasks define dependencies

62

on other tasks by means of an Xtext cross-reference. They also contain an action, which
is a XBlockExpression from Xbase, thus everthing is possible within a task.

7.4. Translation to Java

For each BuildFile we create a Java class that extends the library class BuildScript.
We generate a main method allowing to execute the script as a Java application with
command line parameters. The use of System.exit allows to return error codes to the
caller.
DSL

package sample

Java

package sample;
...
public class SimpleBuild extends BuildScript {
...
public static void main(final String... args) {
SimpleBuild script = new SimpleBuild();
if (script.showHelp(args)) {
System.exit(HELP);

}
System.exit(script.doBuild(args));

}
...
}

The respective inferrer code looks like this:

class BuildDSLJvmModelInferrer extends AbstractModelInferrer {

@Inject extension JvmTypesBuilder

def dispatch void infer(BuildFile file,
extension IJvmDeclaredTypeAcceptor acceptor,
boolean isPreIndexingPhase) {

val qualifiedName = file.javaClassName
val simpleName = Strings.lastToken(qualifiedName, ".")
accept(file.toClass(fqn))[
superTypes += typeRef(BuildScript)

63

...
val stringArray = typeRef(String).addArrayTypeDimension
members += file.toMethod("main", typeRef(void)) [
parameters += file.toParameter("args", stringArray)
varArgs = true
static = true
body = ’’’
?scriptName? script = new ?scriptName?();
if (script.showHelp(args)) {
System.exit(HELP);

}
System.exit(script.doBuild(args));

’’’
]

]
...

Each Task becomes a method in the Java class. A DependsOn annotation commu-
nicates the dependencies to the runtime. The superclass will scan for such annotations
and execute the dependencies in the right order.
DSL

task print depends prepare {
print(name)

}

Java

@DependsOn("prepare")
protected void print() {
InputOutput.<String>print(this.name);

}

The annotation part may be interesting, so here is the snippet from the inferrer:

// a method for the actual task body
members += file.tasks.map[task | toMethod(task.methodName, typeRef(Void.TYPE)) [
visibility = JvmVisibility.PROTECTED
annotations += annotationRef(DependsOn, task.depends.map[name])
body = task.action
]

64

]

Finally, we create a field with the Param annotation from each Parameter. The
superclass will make the so marked fields initializable from command line arguments.
DSL

param name = ’World’

Java

@Param
public String name = "World";

The type can be skipped. If there is an initialization expression, the parameter’s
type is inferred from the initialization expression. If that one is missing, too, String is
assumed. The Elvis-operator ?: comes handy for this use case. The different sources
are tried to find the best type for the field. In the inferrer, this looks like:

@Inject ITypeProvider typeProvider
...
val type = declaredParameter.type

?: declaredParameter?.init?.inferredType
?: typeRef(String)

7.5. Validation

When Tasks are depending on each other, cycles will break the computation of the
execution order. There is a check for this constraint in the validator BuildDSLValidator:

class BuildDSLValidator extends XbaseJavaValidator {
...
@Check
def void checkNoRecursiveDependencies(Task task) {
task.findDependentTasks [cycle |
if (cycle.size == 1) {
error(’’’The task ’?task.name?’ cannot depend on itself.’’’,

cycle.head, DECLARATION__NAME, CYCLIC_DEPENDENCY)

65

} else {
error(’’’There is a cyclic dependency that involves tasks ?

cycle.map[name].join(", ")?’’’,
cycle.head, DECLARATION__NAME, CYCLIC_DEPENDENCY)

}
]

}
...

7.6. Imports

By using the XImportSection form Xbase, the language automatically supports the no-
tion of plain imports, static imports and static extension imports. While the first two
work as in Java, a static extension import puts the static methods of the specified calls
on the extension scope, such that it can be called as if it were a method on the first
argument. See the Xtend primer (§5.6) for a more detailed description.

We ship some predefined extension classes to enhance the Java classes File and Class.
These are always put onto the extension scope by a customized BuildDSLImplicitlyImportedTypes
:

class BuildDSLImplicitlyImportedTypes extends ImplicitlyImportedFeatures {
/**
* Add methods from {@link FileExtensions} and {@link ClassExtensions} to the extension scope.
*/
override protected getExtensionClasses() {

(super.getExtensionClasses() + #[FileExtensions, ClassExtensions])
.toList

}
}

As always, such an implementation has to be bound in the BuildDSLRuntimeModule:

public class BuildDSLRuntimeModule
extends org.xtext.builddsl.AbstractBuildDSLRuntimeModule {

...
public Class<? extends ImplicitlyImportedFeatures>

bindImplicitlyImportedFeatures() {
return BuildDSLImplicitlyImportedTypes.class;

}
}

66

7.7. Operator Overloading

As we expect a build language to deal with files and directories a lot, we have extended
the syntax around these in the FileExtensions. We leverage the fact that Xbase allows
to overload operators by means of library extensions. The following examples show how
to avoid the noisy constructor calls to File:
DSL

val dir = ’someDir’.file
val file = dir / ’fileName.txt’
val theSameFile = ’someDir’ / ’fileName.txt’

Java

final File dir = FileExtensions.file("someDir");
final File file = FileExtensions.operator_divide(dir, "fileName.txt");
final File theSameFile = FileExtensions.operator_divide(

"someDir",
"fileName.txt");

The compiler replaces operators with method calls to methods named operator <operatorName>().
These have to be callable on the left operand, i.e. be a method of the left operands type
or be added as an extension to the left operand type. In this case, we use the latter
approach, since File as well as String are sealed types. To learn more about operators
and operator overloading please consult the Xtext documentation.

7.8. Run as... Integration

To facilitate executing build scripts from within Java, we have extended Eclipse’s launch
support. The respective classes are BuildDSLLaunchDelegate, BuildDSLLaunchShortcut
and BuildDSLLaunchTabGroup. Describing all the details would be a bit lengthy but

it is quite straightforward if you are familiar with the launching API.

67

http://www.eclipse.org/Xtext/documentation.html#Xbase_Expressions_Operators

8. DSL for MongoDB

MongoDB is a very popular document-based database management system. In mon-
goDB, database entries (AKA documents) have fields, which are essentially (key, value)
pairs. MongoDB is schema free, i.e. there are no rules, which fields have to be de-
fined and of what type they are. This allows for very flexible and heterogeneous data
structures and is a perfect match with JSON.

OTOH, Java is statically typed: The available types, their field names and field types
are known and validated at compile time. The JavaBeans convention defines how in-
stances can be manipulated. The standard mongoDB Java driver reflects the fact that
mongoDB is schema-free by providing mongo documents as plain Java maps.

With this language you can describe statically typed Java-facades for MongoDB docu-
ments without hiding the dynamic nature of them. The language uses a tree-like syntax
similar to JSON but lets you add static Java type information.

68

http://www.mongodb.org

8.1. Overview

In this project, we have created a small DSL mongoBeans based on Xtext that allows
to create basic entity classes. These are backed by mongoDB objects but provide a
statically typed JavaBeans API. Think of the language as a description how to map
mongoDB documents to JavaBeans, in analogy to well known object relational mappers.

An example mongoBeans file looks like this:

import java.util.*

package org.musicdb {
// a mongo bean
Artist {

String name // single valued property
Album* albums // array property
// an operation
Iterable<Track> getOeuvre() {

albums.map[track].flatten
}

}

// another mongo bean
Album {

String title
int year
// inline definition of a mongo bean
Track {

String title
int seconds

}* tracks
}

}

For each MongoBean definition in a MongoFile file, we generate a Java class that
wraps a DBObject. The class provides statically typed getter and setter methods for all
defined MongoProperties. In the implementation of these accessor methods we delegate
to the wrapped DBObject and do all the casting and conversion work. For the Artist in
the above example, this would look like

public class Artist implements IMongoBean {

private DBObject _dbObject;
...
public String getName() {
return (String) _dbObject.get("name");

69

}

public void setName(final String name) {
_dbObject.put("name", name);

}
...

}

By using the generated Java code, the rest of the application can use a type-safe and
JavaBeans conformant API to access the data model. In addition, MongoBeans can
define MongoOperations, which are translated to Java methods. We can use Mongo-
Properties as well as Java types inside the operations’ bodies.

Client code could then look like this:

Artist john = new Artist();
john.setName("John Coltrane");
Album album = new Album();
album.setTitle("A Love Supreme");
john.getAlbums().add(album);
Track... // create some tracks and add them to the album

System.out.println(john.getName() + "’s Oeuvre");
for(Track track: john.getOeuvre())
System.out.println(track.getTitle());

DBCollection dbCollection = ... // standard mongoDB driver code
dbCollection.save(john.getDBObject())

8.2. Running the Example

In addition to the common requirements (§5.4), you need the mongoDB implementation
for your platform. We have included the mongoDB Java driver from Eclipse Orbit in
the code base.

Import the projects into an Eclipse workspace and run the launch configuration Run
(org.eclipse.xtext.mongobeans). Import the example plug-in into the new workspace and
run MusicDBXtendTest as a JUnit test.

8.3. Grammar

The complete mongoBeans grammar looks like this:

grammar org.xtext.mongobeans.MongoBeans with org.eclipse.xtext.xbase.Xbase

70

http://www.mongodb.org/downloads
http://download.eclipse.org/tools/orbit/downloads/

generate mongoBeans "http://www.eclipse.org/xtext/mongobeans/MongoBeans"

MongoFile:
importSection=XImportSection?
elements+=AbstractElement*;

AbstractElement:
PackageDeclaration | MongoBean;

PackageDeclaration:
’package’ name=QualifiedName ’{’

elements+=AbstractElement*
’}’;

MongoBean:
name=ValidID ’{’

features+=AbstractFeature*
’}’;

AbstractFeature:
MongoOperation | MongoProperty;

MongoProperty:
(type=JvmTypeReference | inlineType=MongoBean) (many?=’*’)? name=ValidID;

MongoOperation:
=>(returnType=JvmTypeReference name=ValidID ’(’)

(parameters+=FullJvmFormalParameter
(’,’ parameters+=FullJvmFormalParameter)*

)?
’)’
body=XBlockExpression;

The language inherits from the Xbase grammar in order to allow Xbase expressions
and references to Java elements. A MongoFile starts with an import section (see Build
DSL (§7.6) for details). The import section is followed by any number of AbstractEle-
ments, which can be PackageDeclarations or MongoBeans. Note that as opposed to
Java, PackageDeclarations can be nested. MongoBeans define statically typed Mongo-
Properties, which can be single-valued or multi-valued denoted by an * following the
type name. The type of a MongoProperty can also be defined inline. MongoBeans can
also define MongoOperations. The body of such an operation is an XBlockExpression
from Xbase.

71

8.4. Translation to Java

The JVM model inference is implemented in the MongoBeansJvmModelInferrer. As the
generated code is quite rich, this is the most complex component of this language.

For each MongoBean, we create a Java class implementing the interface IMongoBean.
This interface is the first type of a small runtime library that has to be on the classpath
at runtime.
DSL

package org.musicdb {
Artist { ...

Java

package org.musicdb;
...
public class Artist implements IMongoBean { ...

The inferrer code responsible for this section looks like this:

@Inject extension JvmTypesBuilder
@Inject extension IQualifiedNameProvider
...
def dispatch void infer(MongoFile file,

IJvmDeclaredTypeAcceptor acceptor,
boolean isPreIndexingPhase) {

for(bean : file.eAllOfType(MongoBean)) {
acceptor.accept(bean.toClass(bean.fullyQualifiedName))[

documentation = bean.documentation
superTypes += typeRef(IMongoBean)

... // calling various methods to create Java members
// from the AbstractFeatures
]

}
}

First, it finds all elements of type MongoBean in the given MongoFile. For each of
these, it creates a new Java class. Then the documentation is copied and the interface
IMongoBean is added to the list of supertypes. This will also insert a Java import at
the appropriate location.

72

Each MongoBean wraps a DBObject, which is represented as a Java field with a getter.
There are two constructors, one for a given DBObject and one that creates a new one.
We have to store the class name in the DB object, if we want to be able to restore
JavaBeans from query results.
DSL

Artist { ...

Java

public class Artist implements IMongoBean {
private DBObject _dbObject;

public DBObject getDbObject() {
return this._dbObject;

}

public Artist(final DBObject dbObject) {
this._dbObject = dbObject;

}

public Artist() {
_dbObject = new BasicDBObject();
_dbObject.put(JAVA_CLASS_KEY, "org.musicdb.Artist");

}
...

The inferrer code does this in two separate methods: One for the property dbObject
and another for the constructors.

def protected addDbObjectProperty(JvmDeclaredType
inferredType,
MongoBean bean) {

inferredType.members += bean.toField(’_dbObject’, typeRef(DBObject))
inferredType.members += bean.toGetter(’dbObject’, ’_dbObject’, typeRef(DBObject))

}

def protected addConstructors(JvmDeclaredType inferredType,
MongoBean bean) {

inferredType.members += bean.toConstructor [
documentation = ’’’...’’’
parameters += bean.toParameter("dbObject", typeRef(DBObject))
body = ’’’

73

this._dbObject = dbObject;
’’’

]
inferredType.members += bean.toConstructor [
documentation = ’’’...’’’
body = ’’’
_dbObject = new com.mongodb.BasicDBObject();
_dbObject.put(JAVA_CLASS_KEY, "?inferredType.identifier?");

’’’
]

}

Next on our list are the getters and setters delegating to the dbObject. We have to
handle four cases: Properties with a type that can be handled by the mongoDB Java-
driver directly (most primitive types, String, Date, etc.), IMongoBean properties, and
their respective multi-valued counterparts:

74

DSL

...
String name // primitive property
Artist friend // bean-type property
String* aliases // multi-valued primitive property
Album* albums // multi-valued bean-type property

...

Java

...
public String getName() {
return (String) _dbObject.get("name");

}
public void setName(final String name) {
_dbObject.put("name", name);

}

public Artist getFriend() {
return WrappingUtil.wrapAndCast(

(DBObject) _dbObject.get("friend"));
}
public void setFriend(final Artist friend) {
_dbObject.put("friend", WrappingUtil.unwrap(friend));

}

public List<String> getAliases() {
return (List<String>) _dbObject.get("aliases");

}

private MongoBeanList<Album> _albums;
public List<Album> getAlbums() {
if(_albums==null)
_albums = new MongoBeanList<Album>(_dbObject, "albums");

return _albums;
}

...

The runtime helper class WrappingUtil does the conversion between DBObject and
IMongoBean. For multi-valued MongoProperties we need getters only. If they have a
primitive type, they can be handled by the Java-driver directly. Multi-valued MongoBean
typed properties require a special MongoBeanList to automatically wrap/unwrap the

75

elements.
The corresponding inferrer code does not show anything particularly new so we skip

most of it for brevity. To detect whether a type is an IMongoBean or a primitive
mongoDB type, we use the last helper class MongoTypes. The following snippet shows
the inference of the getter for multi-valued properties:

def protected addListAccessor(JvmDeclaredType inferredType,
MongoProperty property) {

val propertyType = property.jvmType.asWrapperTypeIfPrimitive
if(propertyType.isMongoPrimitiveType) {
inferredType.members += property.toMethod(
’get’ + property.name.toFirstUpper,
typeRef(List, propertyType)

) [
...

]
} else {
inferredType.members += property.toField(
’_’ + property.name, typeRef(MongoBeanList, propertyType))

inferredType.members += property.toMethod(
’get’ + property.name.toFirstUpper, typeRef(List, propertyType)

) [
...

Last but not least, we infer Java methods for MongoOperations.

76

DSL

...
Iterable<Track> getOeuvre() {

albums.map[tracks].flatten
}

...

Java

...
public Iterable<Track> getOeuvre() {
// some java code you really don’t care about
// but it should just do the right thing

}
...

The inferrer code for this particular task is surprisingly simple, as we can directly
associate the body of the MongoOperation to the generated Java method. The Xbase
compiler will automatically transform that to Java.

def protected addMethod(JvmDeclaredType inferredType,
MongoOperation operation) {

inferredType.members += operation.toMethod(operation.name,
operation.returnType) [

documentation = operation.documentation
for(parameter: operation.parameters)
parameters += parameter.toParameter(parameter.name,

parameter.parameterType)
body = operation.body

]
}

8.5. Qualified Name Provider

By default, the qualified name of an element is calculated by joining all the simple names
of its containers with a dot. In our example, the MongoBean Track would consequently
be named org.musicdb.Album.track.Track. To ignore properties and beans on the path,
we implemented our own MongoQualifiedNameProvider.

77

class MongoQualifiedNameProvider extends XbaseQualifiedNameProvider {

def qualifiedName(MongoBean mongoBean) {
val packageDeclaration =
mongoBean.getContainerOfType(PackageDeclaration)

if(packageDeclaration != null)
packageDeclaration.fullyQualifiedName.append(mongoBean.name)

else
return QualifiedName.create(mongoBean.name)

}
}

To make the framework pick up our customization, we have to add a binding in the
respective Guice module.

@Override
public Class<? extends IQualifiedNameProvider> bindIQualifiedNameProvider() {
return MongoQualifiedNameProvider.class;

}

See the Xtext documentation to learn more about Xtext’s dependency injection.

8.6. Validation

The Java driver for mongoDB cannot map all Java types to mongoDB types. To enforce
that constraint, we have added the MongoBeansValidator. It also checks for missing
types and avoids name collisions in the generated code with the implicitly defined prop-
erty dbObject.

class MongoBeansValidator extends XbaseJavaValidator {
...
@Inject extension MongoTypes mongoTypes

@Check def checkMongoProperty(MongoProperty it) {
if (name == ’dbObject’)
error("Illegal property name ’dbObject’",

ABSTRACT_FEATURE__NAME,
ILLEGAL_PROPERTY_NAME,
’_’ + name)

if (type != null) {
if (!type.isMongoType)

78

http://www.eclipse.org/Xtext/documentation.html

error(’Only MongoBeans and mappable types are allowed’,
MONGO_PROPERTY__TYPE, ILLEGAL_TYPE)

} else if (inlineType == null) {
error(’Type must be set’, ABSTRACT_FEATURE__NAME, MISSING_TYPE)

}
}

...

8.7. IDE Enhancements

The validator from the previous section raises an error ILLEGAL PROPERTY NAME
when a property is named dbObject. We have implemented a quick fix to replace the
invalid name:

class MongoBeansQuickfixProvider extends XbaseWithAnnotationsQuickfixProvider {

@Fix(MongoBeansValidator.ILLEGAL_PROPERTY_NAME)
def void capitalizeName(Issue issue, IssueResolutionAcceptor acceptor) {
acceptor.accept(issue,

’Rename to ’ + issue.data.head,
’’’Rename property to ?issue.data.head?.’’’,
null) [

xtextDocument.replace(issue.offset, issue.length, issue.data.head)
]

}
}

To improve the language IDE visually, we have tuned the outline a bit

class MongoBeansOutlineTreeProvider extends DefaultOutlineTreeProvider {
// don’t show children of operations
def _isLeaf(MongoOperation operation) {
true

}

// show inline declared MongoBeans
def _createChildren(IOutlineNode parentNode, MongoProperty property) {
if(property.inlineType != null)
parentNode.createNode(property.inlineType)

}

def _isLeaf(MongoProperty property) {
property.inlineType == null

79

}
}

and the label provider as well:

class MongoBeansLabelProvider extends XbaseLabelProvider {
...
override image(Object element) {
// icons are stored in the ’icons’ folder of this project
switch element {
MongoBean: ’Letter-B-blue-icon.png’
MongoProperty: ’Letter-P-orange-icon.png’
MongoOperation: ’Letter-O-red-icon.png’
Import: ’imp_obj.gif’
PackageDeclaration: ’package_obj.gif’
default:
super.image(element)

}
}

80

9. DSL for Guice

The Guice DSL is a little language that lets you define Guice modules in a readable and
declarative way.

9.1. Overview

Guice is a great dependency injection container, which uses Java types and annotations
to declare and refer to injection points. You could for instance have the following field:

@Inject
@Named("properties") Map<String,String> properties;

81

A module is used to tell the framework what instance to inject into such injection
points. For that, Guice comes with a fluent interface API written in Java and a couple
of tricks (e.g. TypeLiteral) to make the configuration as readable and maintainable as
possible.

You could for instance declare the following module:

public class MyModule implements Module {
@Override
public void configure(Binder binder) {
Map<String,String> properties = Maps.newHashMap();
properties.put("debugLevel", "info");

binder.bind(new TypeLiteral<Map<String,String>>(){})
.annotatedWith(Names.named("properties"))
.toInstance(properties);

}
}

The big advantage of using Java over an external text or XML file is that you can
leverage the IDE and the type checking. We want to have that. The downside is that
you have to trick (i.e. TypeLiteral) a lot in order to have an agreeable syntax. Also since
the configuration is ’hidden’ in a method implementation and not really declarative you
cannot validate a Guice module at compile time.

The Guice DSL described in this section lets you describe the module above like this:

MyModule {
@Named("properties") Map<String,String>
to-instance newHashMap(’debugLevel’ -> ’info’)

}

This not only uses the exact same syntax one uses in any injection points, but also
opens up all kinds of possibilities for static analysis. Usually the instantiation of a Guice
injector at runtime takes quite some time, because then all the very helpful validation
is done. A language like the one described in this section could do all theses analysis at
compile time, that way speeding up start up of the whole application significantly.

9.2. Running the Example

In the example located in the project org.xtext.guicemodules.examples two modules are
declared, one for a possible runtime scenario and one for a test scenario (yes, you some-
times want a module for tests).

82

import com.acme.*
import com.acme.impl.*

com.acme.RuntimeModule {
bind DataProvider to FileDataProvider
bind @DataFile String to-instance ’my-data.txt’

}

com.acme.TestModule mixin RuntimeModule {
bind DataProvider to-instance [’dummy-data’]
bind LoggingService to BufferedLoggingService

}

You can see the two modules in action by running com.acme.Main from the context
menu as a Java application or as a JUnit test.

9.3. Grammar

The grammar is less than 30 lines long. It allows declaring any number of imports using
the import mechanism already described for the scripting language (§6.3). A module can
’mixin’ any number of other modules, which allows to reuse existing modules but override
keys with different bindings. The mixin feature is described as a cross reference to
another ModuleAST. Cross references are covered in detail in the Xtext documentation.

The language allows binding keys to other keys and to instances. Other concepts like
binding to providers is something you could do, but would not help in getting the idea
across. Everybody is encouraged to fork this first prototype and build something really
useful ;-)

Instead of extending org.eclipse.xtext.xbase.Xbase the grammar org.eclipse.xtext.xbase.annotations.XbaseWithAnnotations
is extended which adds full support for annotations. You just have to refer to the rule
XAnnotation as it is done in the rule KeyAST. Btw. it is sometimes a good idea to suffix
(or prefix) the AST node types to avoid confusion when working with a library where
concepts are named similarly.

grammar org.xtext.guicemodules.GuiceModules
with org.eclipse.xtext.xbase.annotations.XbaseWithAnnotations

import "http://www.eclipse.org/xtext/common/JavaVMTypes" as types
generate guiceModules "http://www.xtext.org/guicemodules/GuiceModules"

ModulesAST :
importSection=XImportSection?
modules+=ModuleAST*;

83

http://www.eclipse.org/Xtext/documentation.html#cross_reference

ModuleAST :
name=QualifiedName (’mixin’ mixins+=[ModuleAST|QualifiedName]
(’,’ mixins+=[ModuleAST|QualifiedName])*)?

’{’
bindings+=BindingAST*

’}’
;

BindingAST:
’bind’ from=KeyAST
(’to’ to=KeyAST | ’to-instance’ toInstance=XExpression)?;

KeyAST:
annotation=XAnnotation? type=JvmTypeReference;

9.4. Translation to Java

A module is mapped to a single java class. The ’mixin’ modules are not translated to
Java inheritance but to a delegation approach. Here is how a simple module declaration
with a single mixed-in module is translated.

84

DSL

MyModule mixin OtherModule {
}

Java

public class MyModule implements Module {

private OtherModule otherModule = new OtherModule();

public void configure(final Binder binder) {
configure(binder, new HashSet<com.google.inject.Key<?>>());

}

public void configure(final Binder bind,
final Set<Key<? extends Object>> usedKeys) {

try {
testModule.configure(bind, usedKeys);

} catch (Exception e) {
throw new RuntimeException(e);

}
}

}

As you can see, the language simply leverages the nice equals/hashCode implementa-
tion of Guice’s Key to implement the override semantics of mixed-in modules.

The corresponding parts in GuiceModulesJvmModelInferrer are:

accept(module.toClass(module.fullyQualifiedName))[
...
// declare a field for each mixed-in module
for (mixin : module.mixins) {
if (!mixin.eIsProxy)
members += mixin.toField(mixin.simpleName,
typeRef(mixin.fullyQualifiedName.toString)) [
initializer = ’’’new ?mixin.name?()’’’

]
}

// and later when declaring the configure method
members+= module.toMethod("configure", typeRef(void)) [
documentation = ’Registers bindings for keys not present in ...’

85

parameters += module.toParameter("bind", typeRef(Binder))
parameters += module.toParameter("usedKeys", typeRef(Set, typeRef(Key, wildcard)))
body = ’’’
try {
...some other code
?FOR mix : module.mixins?
?mix.simpleName?.configure(bind, usedKeys);

?ENDFOR?
} catch (Exception e) {
throw new RuntimeException(e);

}
’’’

]

Expressions are used in to-instance bindings and as always they need a proper scope
to live in. The simplest way is to declare a private method for each expression.

for (binding : module.bindings) {
// if it’s a toInstance binding, create a synthetic
// method to give the expression a proper scope
if (binding.toInstance != null) {
members += binding.toMethod(binding.syntheticToInstanceName,

binding.from.type) [
visibility = JvmVisibility.PRIVATE
body = binding.toInstance

]
}

...

In order to obtain instances of annotations as required by Guice’s Binder, we declare
dummy fields for annotated types and use reflection to get corresponding instances.

86

DSL

com.acme.RuntimeModule {
bind @DataFile String to-instance ’my-data.txt’

}

Java

// declaration of dummy field with annotation
@DataFile
private String _from0;

// and later the following code is used to get the key
Key<java.lang.String> key =

Key.get(new TypeLiteral<String>(){},
getClass().getDeclaredField("_from0").getAnnotations()[0]);

The two sections in the model inferrer responsible for this are:

for (binding : module.bindings) {
...
// if a key has an annotation, declare a field so we can use that
// annotation via reflection later.
if (binding.to?.annotation != null) {
members += binding.toField(binding.to.syntheticName, binding.to.type) [
addAnnotation(binding.to.annotation)
visibility = JvmVisibility.PRIVATE

]
}
if (binding.from.annotation != null) {
members += binding.toField(binding.from.syntheticName,

binding.from.type) [
addAnnotation(binding.from.annotation)
visibility = JvmVisibility.PRIVATE

]
}

}

// and the following method
def guiceKey(KeyAST it) ’’’
Key.get(new TypeLiteral<?type>(){}?
IF annotation != null
?, getClass().getDeclaredField("?syntheticName?").getAnnotations()[0]?

87

ENDIF?)’’’

That is basically it. The rest should hopefully be self-explanatory.

9.5. Validation

One of the sweet spots for a Guice modules DSL is the ability to do a lot of the validation
usually done at runtime during compile time. Since this is just an example it just
scratches the surface. There is just a single compiler check validating whether any used
annotation is itself annotated with BindingAnnotation.

This is the relevant code from GuiceModulesValidator:

@Check def checkAnnotationIsBindingAnnotation(XAnnotation it) {
switch type : annotationType {
JvmAnnotationType:
if(!type.annotations.exists[

annotation.is(BindingAnnotation)
])

error("The annotation is not annotated with @BindingAnnotation",
XANNOTATION__ANNOTATION_TYPE)
}

}

It would be really cool to leverage the full information, which is available and analyze
the dependencies transitively so you get feedback while you type for any unfulfilled
dependencies. Also using all the information to compile a ready to use Injector instead
of a module seems interesting.

88

10. Http Routing Language

This is a little language that lets you dispatch incoming HTTP requests.

10.1. Overview

For server-side web development one needs to match any incoming HTTP requests to
some handling code. A request is defined by a HTTP method (i.e. GET, POST, etc.),
a URL and maybe some other data (headers, parameters, etc.). In the Java world there
are many different solutions to this problem. Java Servlets come with an external con-
figuration (web.xml), where you configure what servlet should be called for which URLs.
JAX-RS (JSR-311) uses annotations to match incoming URLs and other frameworks
have their own external DSLs for that.

89

The HTTP routing language explained in this section uses an approach very similar
to the one from the Play framework. You basically declare a list of URL patterns
and explain what to do for each case. In contrast to Play! which heavily relies on
static methods, you can also declare so called dependencies which are translated to
fields annotated with @Inject. So this DSL plays nicely with dependency injection and
especially with the Guice modules DSL (§9).

inject GuessTheNumber controller

GET /guess/:theGuess
do controller.handleGuess(theGuess)

As you can see, you can have named variable placeholders in the URL and use them
in the do-part. There also is a when-part which allows to specify an additional condition
using the request object as well as any parameters:

inject GuessTheNumber controller

GET /guess/:theGuess
when !controller.isValidGuess(theGuess)
do controller.handleWrongRange(theGuess)

GET /guess/:theGuess
do controller.handleGuess(theGuess)

10.2. Running the Example

The example project’s name is org.xtext.httprouting.examples and includes a simple but
runnable number guessing game. Just start the server (an embedded Jetty) by running
framework.StartServer as a Java Application. Then point your browser to the URL
http://localhost:8080/guess.

10.3. Grammar

The Routing DSL extends org.eclipse.xtext.xbase.annotations.XbaseWithAnnotations to
make use of expressions predefined by Xbase plus support for Annotations.

grammar org.xtext.httprouting.Route
with org.eclipse.xtext.xbase.annotations.XbaseWithAnnotations

90

http://playframework.org
http://localhost:8080/guess
documentation.html#xbaseExpressions

generate route "http://www.xtext.org/httprouting/Route"
import "http://www.eclipse.org/xtext/common/JavaVMTypes" as types
import "http://www.eclipse.org/xtext/xbase/Xbase" as xbase

Model :
importSection=XImportSection?
declarations+=AbstractDeclaration*;

AbstractDeclaration :
Dependency | Route;

Dependency :
’inject’ annotations+=XAnnotation? type=JvmTypeReference name=ID;

Route :
requestType=RequestType url=URL
(’when’ condition=XExpression)?
’do’ call=XExpression;

enum RequestType :
GET | POST | PUT | DELETE | HEAD;

/**
* matches URLs like
* ’/foo/bar.html’ or
* ’/customer/:customerID/save’
*/
URL :

{URL}
(’/’ | (’/’ (QualifiedName | variables+=Variable))*
(’/’ variables+=Variable wildcard?=’*’)?);

Variable :
’:’ name=ID;

There should not be any surprises if you know the grammar language: A Model consists
of an XImportSection followed by any number of Dependencies and Routes. A Route
starts with a RequestType, i.e. HTTP method, followed by a URL pattern. Then an
optional when-clause can be specified followed by a mandatory do-clause.

10.4. Translation to Java

In RouteJvmModelInferrer you can see that a Java class extending the class HttpServlet
is derived. First the Dependencies are translated to Java fields. This is almost a one-to-
one mapping.

91

// translate the dependencies to fields annotated with @Inject
for (field : model.declarations.filter(Dependency)) {
members += field.toField(field.name, field.type) [
annotations += annotationRef(Inject)

addAnnotations(field.annotations)
]

}

Next up a field for the URL patterns is generated and a method for the used expres-
sions, such giving them a proper scope and context.

// declare fields for the URL regexp, a method for each when-part
// and of course the call part of a route
for (route : model.routes.filter[url != null]) {
members += route.toRoutePatternField
if (route.condition != null)
members += route.toRouteConditionMethod

members += route.toRouteCallMethod
}

Note that the code in a model inferrer has to be very defensive, because it is called for
any kind of broken models. You just cannot assume that the URL is set although it is
mandatory in the grammar, because the user might have written syntactically incorrect
code.

Next up the handler methods from HttpServlet are implemented such that they dis-
patch according the URL patterns and when-clauses. Here is a translated example:

92

DSL

import com.acme.GuessTheNumber

inject GuessTheNumber controller

GET /guess/:theGuess
do controller.handleGuess(theGuess)

Java

@SuppressWarnings("serial")
public class NumberGuessing extends HttpServlet {
@Inject
private GuessTheNumber controller;

private static Pattern _pattern2 = Pattern.compile("/guess/(\\w+)");

public void _doGet2(final HttpServletRequest request,
final HttpServletResponse response,
final String theGuess) {

this.controller.handleGuess(theGuess);
}

@Override
public void doGet(final HttpServletRequest request,

final HttpServletResponse response) {
String url = request.getRequestURL().toString();
{
Matcher _matcher = _pattern2.matcher(url);
if (_matcher.find()) {
String theGuess = _matcher.group(1);
_doGet2(request, response, theGuess);

}
}

}
}

As you can see the expression controller.handleGuess(theGuess) is put into a method
with three parameters. This is done in the following method from RouteJvmModelInferrer
:

/**

93

* Creates a method for the route’s target call.
* Gives scope and live to the expression.
*/
def protected toRouteCallMethod(Route route) {
route.toMethod(route.nameOfRouteMethod, typeRef(Void.TYPE)) [
parameters += route.toParameter("request", typeRef(HTTP_REQUEST))
parameters += route.toParameter("response", typeRef(HTTP_RESPONSE))
for (variable : route.url.variables) {
parameters += variable.toParameter(variable.name, typeRef(String))

}
body = route.call

]
}

Just because of that code you can now refer to the local variables request, response,
and theGuess. Also it defines that the expected type is void so you are not allowed to
write thing like return 42.

94

11. Template Language

This is a little template language specialized in generating HTML documents.

The language allows web designers to do their job and lets developers put in the
dynamic parts. The syntax and terminals are chosen to be readable and allow rendering
the templates in the browser as well as in any HTML 5 compatible WYSIWYG editors.
Still, when opened in the DSL editor you get the fully featured, statically typed Eclipse
editor.

11.1. Overview

A template language works in two modes: Plain text mode, where everything goes
directly into the output and the expression mode, where expressions have to be evaluated

95

and the result is inserted into the text. To switch between text mode and expression
mode, we use the French quotes ? and ?. A document starts in text mode.

The template will be compiled to a Java class with a generate(params) method. You
can provide additional information like a package declaration, imports and parameters
in the preamble inside a template at the beginning of the document.

We provide additional FOR-ENDFOR and IF-ELSE-ENDIF statements to iterate /
branch over fixed text blocks. To distinguish them from the Xbase expressions with the
same names, they are in uppercase.

11.2. Running the Example

In the runtime workspace, run the GenerateHtml file as a Java application (Run as...
> Java Application from the context menu). This will execute the template MyWebsite
and print the result to the console.

11.3. Grammar

This is the grammar of the templates DSL:

grammar org.xtext.template.Template
with org.eclipse.xtext.xbase.annotations.XbaseWithAnnotations

generate template "http://www.xtext.org/template/Template"
import ’http://www.eclipse.org/xtext/xbase/Xbase’ as xbase

TemplateFile:
’<!--’’?’

(’package’ package=QualifiedName)?
importSection=XImportSection?
params+=Parameter*
body=RichString;

Parameter:
annotations+=XAnnotation*
’param’ type=JvmTypeReference? name=ID (’=’ defaultexp=XExpression)?;

RichString returns xbase::XBlockExpression:
{RichString}
expressions+=RichStringLiteral
(expressions+=RichStringPart expressions+=RichStringLiteral)*;

RichStringLiteral returns xbase::XStringLiteral:
{RichStringLiteral} value=TEXT;

RichStringPart returns xbase::XExpression:

96

XExpressionInsideBlock |
RichStringForLoop |
RichStringIf;

RichStringForLoop returns xbase::XForLoopExpression:
{RichStringForLoop}
"FOR" declaredParam=JvmFormalParameter ’:’ forExpression=XExpression

eachExpression=RichString
"ENDFOR";

RichStringIf returns xbase::XIfExpression:
{RichStringIf}
"IF" if=XExpression

then=RichString
(else=RichStringElseIf | "ELSE" else=RichString)?
"ENDIF";

RichStringElseIf returns xbase::XIfExpression:
{RichStringIf}
"ELSEIF"if=XExpression

then=RichString
(else=RichStringElseIf | "ELSE" else=RichString)?;

terminal TEXT : ’?’ (!’?’)* (EOF|’?’);

It becomes quite straightforward once you have understood the escaping. Have a look
at the last rule TEXT first: It says that a text starts with a closing French quote and
ends with an opening quote or the end of the file. By inverting opening and closing
quotes we mark up text instead of expressions.

A TemplateFile starts with a comment and switches to the expression mode for the
preamble part consisting of the package declaration, the imports and the parameter dec-
laration. The body is a RichString, which is an alternating sequence of RichStringLit-
erals and RichStringPart. The RichStringLiterals is essentially a text block (in inverted
French quotes). The RichStringPart is either an Xbase expression, a RichStringForLoop
or a RichStringIf. The latter inherit from the Xbase expressions with the same name to
reuse as much of the Xbase infrastructure as possible. The rest should be easy.

11.4. Translation to Java

Each TemplateFile is compiled to a Java class with a generate method that takes a
lambda expression as a parameter. The lambda expression is called to initialize the
template’s properties, by handling the template itself as an argument. This comes along
nicely, especially when called from Xtend.

97

DSL

<!--?
...

?-->

Java

public class MyWebsite {
...
public String generate(final Procedure1<MyWebsite> init) {
if (init != null)
init.apply(this);

String result = generate().toString();
// remove leading -->
result = result.replaceAll("^-->\\r?\\n","");
// trim multi-newline to single newline
result = result.replaceAll("\\r?\\n\\s*\\r\\n?", System.getProperty("line.separator"));
return result;

}
}

The corresponding code in the TemplateJvmModelInferrer is:

class TemplateJvmModelInferrer extends AbstractModelInferrer {
...

def dispatch void infer(TemplateFile element,
IJvmDeclaredTypeAcceptor acceptor,
boolean isPreIndexingPhase) {

val simpleName = element.eResource.URI.trimFileExtension.lastSegment
val qualifiedName = if(element.getPackage != null)

element.getPackage + "." + simpleName
else
simpleName

val javaClass = element.toClass(qualifiedName)
acceptor.accept(javaClass)[

...
// generate a method accepting an initializer lambda expression
members += element.toMethod("generate", typeRef(String)) [
parameters += element.toParameter(
"init", typeRef(Procedures.Procedure1, typeRef(javaClass))

)

98

body = ’’’
if (init != null)
init.apply(this);

String result = generate().toString();
// remove leading -->
result = result.replaceAll("^-->\\r?\\n","");
// trim multi-newline to single newline
result = result.replaceAll("\\r?\\n\\s*\\r?\\n",System.getProperty("line.separator"));
return result;

’’’
...

Each Parameter becomes a Java property, i.e. a field with a getter and a setter.
DSL

param title = "No Title"

Java

private String title = "No Title";

public void setTitle(final String title) {
this.title = title;

}

public String getTitle() {
return this.title;

}

In the inferrer, note that we derive the property’s type in three steps: Take the declared
one, if there is none, derive it from the initializer and if even that fails, use String as
default.

for (param : element.params) {
val type = param.type
?: param.defaultexp?.inferredType
?: typeRef(String)

members += param.toField(param.name, type) [
if (param.defaultexp != null)
initializer = param.defaultexp

]

99

members += param.toSetter(param.name, type)
members += param.toGetter(param.name, type)

}

The body of the template is compiled into a big private generate() method. We skip
the inferrer code here, as it is straightforward. But we had to extend the compiler to
support rich strings and the new FOR?loop our new control structures. This is described
in the next section (§11.5).
DSL

?<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>?title?</title>
<meta name="viewport" content="width=device-width, initial-sca...">
<meta name="description"
content="?description?">

<meta name="author" content="?...

Java

private CharSequence generate() {
StringBuilder _appendable = new StringBuilder();
_appendable.append(ObjectExtensions.operator_elvis(
"-->\n<!DOCTYPE html>\n<html lang=\"en\">\n<head>\n\t<meta...",
""));

_appendable.append(ObjectExtensions.operator_elvis(
this.title,""));

// appends galore
...

11.5. Extending the Compiler

We have added additional expressions to Xbase, so we have to tell the compiler how to
translate them to Java. The XbaseCompiler has a method doInternalToJavaStatement
that dispatches the compilation with regard to the type of the current expression. This
is where we have to hook in with our TemplateCompiler:

100

class TemplateCompiler extends XbaseCompiler {

override protected doInternalToJavaStatement(XExpression expr,
ITreeAppendable it,
boolean isReferenced) {

switch expr {
RichString : {

... }
RichStringForLoop : {

... }
default :
super.doInternalToJavaStatement(expr, it, isReferenced)

}
}

...

For a RichString, we declare a variable appendable of type StringBuilder and append
the results of all its evaluated expressions. Remember from the grammar that every
second expression is a RichStringPart which can be null, so we use the ’elvis operator’
?: to insert an empty string in this case.

RichString : {
val name = declareVariable(expr, ’_appendable’)
newLine
append(’’’
StringBuilder ?name? = new StringBuilder();

’’’)
for (nestedExpression : expr.expressions) {
nestedExpression.internalToJavaStatement(it, true)
newLine
append(’’’?name?.append(ObjectExtensions.operator_elvis(’’’)
nestedExpression.internalToJavaExpression(it)
append(’,""));’)

}
}

As our RichStringLiteral inherits from XStringLiteral, it does not need any special
treatment. The same holds for RichStringIf and RichStringElseIif. The RichStringFor-
Loop requires special treatment, because as opposed to the XForLoopExpression that
always returns null, we want it to return a concatenation of its results. This looks like

RichStringForLoop : {

101

expr.forExpression.internalToJavaStatement(it, true)
val paramType = typeProvider.getTypeForIdentifiable(expr.declaredParam)
val name = declareVariable(expr, ’_forLoopResult’)
newLine
append(’’’
StringBuilder ?name? = new StringBuilder();
for (final ’’’)

serialize(paramType, expr, it);
append(’’’ ?declareVariable(expr.declaredParam,

makeJavaIdentifier(expr.declaredParam.name))? : ’’’)
internalToJavaExpression(expr.forExpression, it)
append(") {").increaseIndentation
expr.eachExpression.internalToJavaStatement(it, true)
newLine
append(’’’?name?.append(’’’)
expr.eachExpression.internalToJavaExpression(it)
append(’);’)

decreaseIndentation.newLine.append("}")
}

The compiler now knows how to handle the new expressions in a statement context.
In addition, we have to teach it to compile them in an expression context. This is what
the second method does:

override protected internalToConvertedExpression(XExpression obj,
ITreeAppendable it) {

if (hasName(obj))
append(getName(obj))

else
super.internalToConvertedExpression(obj, it)

}

As usual, we have to bind our TemplateCompiler in the TemplateRuntimeModule in
order to be picked up as the XbaseCompiler in the context of our language.

11.6. Type Computation

The type system has to know how to determine the types of our new expressions. This is
the job of the TemplateTypeComputer: RichString becomes a StringBuilder. As opposed
to its super type XForLoopExpression a RichStringForLoop is of type StringBuilder as
well. The for-loop’s body is expected to have a type, as the results must be concatenat-
able, which is different from Xbase’s for-loop.

102

class TemplateTypeComputer extends XbaseWithAnnotationsTypeComputer {

def dispatch computeTypes(RichString expression, ITypeComputationState state) {
super._computeTypes(expression as XBlockExpression, state)
state.acceptActualType(getTypeForName(StringBuilder, state))

}

def dispatch computeTypes(RichStringForLoop expression, ITypeComputationState state) {
super._computeTypes(expression as XForLoopExpression, state)
state.acceptActualType(getTypeForName(StringBuilder, state))

}
}

Like the compiler, we have to bind this implementation in our runtime module as well.

11.7. Value Converter

The RichStringLiterals still have the French quotes around their values. As we do not
want to see them in the output, we have implemented the TemplateValueConverterService
and bound it in the runtime module.

11.8. Content Assist

The French quotes are not easy to type on every keyboard. We have adapted content
assist to insert them when the cursor is inside a TEXT terminal:

public class TemplateProposalProvider
extends AbstractTemplateProposalProvider {

@Override
public void complete_TEXT(EObject model,

RuleCall ruleCall,
ContentAssistContext context,

ICompletionProposalAcceptor acceptor) {
acceptor.accept(new CompletionProposal("??",

context.getOffset(), 0, 1));
}

}

103

11.9. Syntax Highlighting

Sometimes it is hard to see whether you are in text mode or in expression mode. To
give the user better feedback, we have changed the way the text is highlighted. This cus-
tomization consists of two parts: Add new highlighting styles in the TemplateHighlightingConfiguration
and apply them to the text in the TemplateHighlightingCalculator. As this is rather

extensively covered in the Xtext documentation, we skip a deeper explanation here.

104

documentation.html#highlighting

12. Little Tortoise

Do you remember the programming language Logo? Logo was used in computer science
classes to teach children how to program. In fact, it was a adaptation of LISP! But the
remarkable part was the so-called turtle, a graphical cursor that can be given commands
to move and turn, thereby drawing lines.

The goal is a language to control a turtle drawing an image. Technically, this example
will teach you how to adapt and use the XbaseInterpreter for your own languages.

12.1. Overview

We have built a language that allows to define Programs and SubPrograms. Each of these
has a body, which can contain any number of expressions. In addition to the standard

105

http://en.wikipedia.org/wiki/Logo_%28programming_language%29

Xbase expressions, we are able to issue commands to the tortoise. Here is an example
explaining the concepts in comments:

// Program: Haus vom Nikolaus
begin
val length = 150 // local variable
val diagonal = length * sqrt(2) // all Math.* methods are available
lineWidth = 2 // assignment of a property
square(length) // call to a SubProgram
turnRight(45) // call to a command method
lineColor = blue // all ColorConstants.* are available
forward(diagonal)
turnLeft(90)
lineColor = red
forward(diagonal / 2)
turnLeft(90)
forward(diagonal / 2)
turnLeft(90)
lineColor = blue
forward(diagonal)

end // main program

sub square // a subprogram
int length // parameter

begin
for (i : 1..4) { // loop-expression from Xbase
forward(length)
turnRight(90)

}
end // sub square

The main trick about our solution is to not bake in the turtle commands into the
language itself, but define it in the runtime library. This way, the language stays as slim
as can be and additions can be easily added without the need to regenerate the whole
language infrastructure.

The core of the runtime library is the class Tortoise. You can think of it as of our
only domainmodel class: It keeps the current state of the tortoise and allows modifying
it using methods. Here is an excerpt of its code:

class Tortoise {
double angle
double x
double y
@Accessors int delay = 200

106

boolean isPaint = true
@Accessors int lineWidth
@Accessors Color lineColor

List<ITortoiseEvent.Listener> listeners = newArrayList()
...

When a method changes the state of the tortoise, an event is thrown. These events are
consumed by a GEF based view and turned into animations of a TortoiseFigure. This
loose coupling of model and view allows for easier testing.

12.2. Running the Example

In the runtime Eclipse, open the Tortoise View (Window > Show View > Other > Xtext
> TortoiseView). Then open one of the example files in org.eclipse.xtext.tortoiseshell.examples.
The Program is interpreted on editor activation and on save. An additional toggle but-
ton Step Mode in the Tortoise View allows to execute the code live from the editor up
to the caret’s current line.

12.3. Grammar

The grammar is very short. Once again, we inherit from the Xbase language to have
nice Java integration and rich expressions. A user can define a Program, which can
have SubPrograms with parameters. The Executable rule is never called, but defines a
common supertype for Program and SubProgram that will hold their common member
body. A Body is an XBlockExpression from Xbase, but with the keywords begin and
end instead of the curly braces.

grammar org.xtext.tortoiseshell.TortoiseShell
with org.eclipse.xtext.xbase.Xbase

import "http://www.eclipse.org/xtext/xbase/Xbase"
generate tortoiseShell "http://www.xtext.org/tortoiseshell/TortoiseShell"

Program :
body=Body
subPrograms+=SubProgram*;

SubProgram:
’sub’ name=ValidID (’:’ returnType=JvmTypeReference)?
(parameters += FullJvmFormalParameter)*
body=Body;

107

Figure 12.1.: Tortoise takes a rest after running the Pythagoras example

Body returns XBlockExpression:
{XBlockExpression}
’begin’
(expressions+=XExpressionInsideBlock ’;’?)*
’end’;

Executable:
Program | SubProgram;

12.4. Translation to Java

With the tortoise commands defined as methods in the runtime library class Tortoise, we
have to infer a Java class that inherits from this. Within this class, we create a method

108

for each Program and SubProgram. The resulting code looks like this:

class TortoiseShellJvmModelInferrer extends AbstractModelInferrer {
public static val INFERRED_CLASS_NAME = ’MyTortoiseProgram’

@Inject extension JvmTypesBuilder

def dispatch void infer(Program program,
IJvmDeclaredTypeAcceptor acceptor,
boolean isPreIndexingPhase) {

acceptor.accept(program.toClass(INFERRED_CLASS_NAME))[
superTypes += typeRef(Tortoise)
if(program.body != null)
members += program.toMethod("main", typeRef(Void.TYPE)) [
body = program.body

]
for(subProgram: program.subPrograms)
members += subProgram.toMethod(subProgram.name,

subProgram.returnType ?: inferredType(subProgram.body)) [
for(subParameter: subProgram.parameters)

parameters += subParameter.toParameter(subParameter.name, subParameter.parameterType)
body = subProgram.body

]
]

}
}

12.5. Interpreter

The Xbase language library does not only provide a compiler that generates Java code,
but also an interpreter. This has been adapted to execute our Programs.

After all an interpreter is just a big visitor. For each expression type, it has an
evaluation method, that recursively calls the evaluation methods for the subexpressions
for its arguments. The methods also pass an execution context storing all temporary
state such as local variables.

The first thing we have to cope with is the mixture of existing Java methods (from
the super class Tortoise) and inferred ones. While the former are evaluated via Java
reflection, we need special treatment for the latter. The idea is to bind an instance of
Tortoise to this and intercept calls to the inferred methods to execute them directly.
This is accomplished by overriding the method invokeOperation:

@Inject extension IJvmModelAssociations

109

override protected invokeOperation(JvmOperation operation,
Object receiver,
List<Object> argumentValues) {

val executable = operation.sourceElements.head
if (executable instanceof Executable) {
val context = createContext
context.newValue(QualifiedName.create("this"), tortoise)
operation.parameters.forEach[p, i|
context.newValue(QualifiedName.create(p.name), argumentValues.get(i))

]
val result = evaluate(executable.body, context, CancelIndicator.NullImpl)
if(result.exception != null)
throw result.exception

result.result
} else {
super.invokeOperation(operation, receiver, argumentValues)

}
}

One thing you have to know about the Java inferrence is that when creating Java
elements using the JvmTypesBuilder, the infrastructure stores the information which
elements have been inferred from which source elements. To navigate these traces, we
use the Xbase service IJvmModelAssociations. So to detect whether a JvmOperation is
inferred, we check whether it has a source element. If so, we have to setup an execution
context binding this and the parameters as local variables and then execute the method’s
body using the interpreter.

To start the interpretation we have to do almost the same: Setup the execution context
and then evaluate the Program’s body. The respective code is

override run(Tortoise tortoise, EObject program, int stopAtLine) {
if(tortoise != null && program != null) {
this.tortoise = tortoise
this.stopAtLine = stopAtLine
try {
program.jvmElements.filter(JvmOperation).head
?.invokeOperation(null, #[])

} catch (StopLineReachedException exc) {
// ignore

}
}

}

The StopLineReachedException is part of the Step Mode. It is thrown when the
execution reaches the line stopAtLine, thus terminating the current execution. The
throwing code is

110

override protected internalEvaluate(XExpression expression,
IEvaluationContext context,
CancelIndicator indicator) {

val line = NodeModelUtils.findActualNodeFor(expression)?.startLine
if(line-1 == stopAtLine)
throw new StopLineReachedException

super.internalEvaluate(expression, context, indicator)
}

12.6. Literal Classes

To make the static methods and fields of Math and ColorConstants callable directly, we
provided the TortoiseShellImplicitlyImportedFeatures:

class TortoiseShellImplicitlyImportedTypes extends ImplicitlyImportedFeatures {
override protected getStaticImportClasses() {
(super.getStaticImportClasses() + #[Math, ColorConstants])
.toList
}

}
}

To overcome a small issue in the interpreter we also had to implement the TortoiseShellIdentifiableSimpleNameProvider
.

111

Part III.

Reference Documentation

112

13. Overview

13.1. What is Xtext?

No matter if you want to create a small textual domain-specific language (DSL) or you
want to implement a full-blown general purpose programming language. With Xtext
you can create your very own languages in a snap. Also if you already have an exist-
ing language but it lacks decent tool support, you can use Xtext to create a sophisti-
cated Eclipse-based development environment providing editing experience known from
modern Java IDEs in a surprisingly short amount of time. We call Xtext a language
development framework.

13.2. How Does It Work?

Xtext provides you with a set of domain-specific languages and modern APIs to describe
the different aspects of your programming language. Based on that information it gives
you a full implementation of that language running on the JVM. The compiler com-
ponents of your language are independent of Eclipse or OSGi and can be used in any
Java environment. They include such things as the parser, the type-safe abstract syntax
tree (AST), the serializer and code formatter, the scoping framework and the linking,
compiler checks and static analysis aka validation and last but not least a code generator
or interpreter. These runtime components integrate with and are based on the Eclipse
Modeling Framework (EMF), which effectively allows you to use Xtext together with
other EMF frameworks like for instance the Graphical Modeling Project GMF.

In addition to this nice runtime architecture, you will get a full blown Eclipse-IDE
specifically tailored for your language. It already provides great default functionality
for all aspects and again comes with DSLs and APIs that allow to configure or change
the most common things very easily. And if that’s not flexible enough there is Guice to
replace the default behavior with your own implementations.

13.3. Xtext is Highly Configurable

Xtext uses the lightweight dependency injection (DI) framework Google Guice to wire
up the whole language as well as the IDE infrastructure. A central, external module
is used to configure the DI container. As already mentioned, Xtext comes with decent
default implementations and DSLs and APIs for the aspect that are common sweet spots
for customization. But if you need something completely different, Google Guice gives
you the power to exchange every little class in a non-invasive way.

113

13.4. Who Uses Xtext?

Xtext is used in many different industries. It is used in the field of mobile devices,
automotive development, embedded systems or Java enterprise software projects and
game development. People use Xtext-based languages to drive code generators that
target Java, C, C++, C#, Objective C, Python, or Ruby code. Although the language
infrastructure itself runs on the JVM, you can compile Xtext languages to any existing
platform. Xtext-based languages are developed for well known Open-Source projects
such as Maven, Eclipse B3, the Eclipse Webtools platform or Google’s Protocol Buffers
and the framework is also widely used in research projects.

13.5. Who is Behind Xtext?

Xtext is a professional Open-Source project. We, the main developers and the project
lead, work for itemis, which is a well known consulting company specialized on model-
based development. Therefore we are able to work almost full-time on the project. Xtext
is an Eclipse.org project. Besides many other advantages this means that you don’t have
to fear any IP issues, because the Eclipse Foundation has their own lawyers who take
care that no intellectual property is violated.

You may ask: Where does the money for Open-Source development come from? Well,
we provide professional services around Xtext. Be it training or on-site consulting, be
it development of prototypes or implementation of full-blown IDEs for programming
languages. We do not only know the framework very well but we are also experts in
programming and domain-specific language design. Don’t hesitate to get in contact with
us (www.itemis.com).

13.6. What is a Domain-Specific Language

A Domain-Specific Language (DSL) is a small programming language, which focuses on
a particular domain. Such a domain can be more or less anything. The idea is that its
concepts and notation is as close as possible to what you have in mind when you think
about a solution in that domain. Of course we are talking about problems which can be
solved or processed by computers somehow.

The opposite of a DSL is a so called GPL, a General Purpose Language such as Java or
any other common programming language. With a GPL you can solve every computer
problem, but it might not always be the best way to solve it.

Imagine you want to remove the core from an apple. You could of course use a Swiss
army knife to cut it out, and this is reasonable if you have to do it just once or twice.
But if you need to do that on a regular basis it might be more efficient to use an apple
corer.

There are a couple of well-known examples of DSLs. For instance SQL is actually a
DSL which focuses on querying relational databases. Other DSLs are regular expres-
sions or even languages provided by tools like MathLab. Also most XML languages

114

http://xtext.itemis.com

are actually domain-specific languages. The whole purpose of XML is to allow for easy
creation of new languages. Unfortunately, XML uses a fixed concrete syntax, which is
very verbose and yet not adapted to be read by humans. Into the bargain, a generic
syntax for everything is a compromise.

Xtext is a sophisticated framework that helps to implement your very own DSL with
appropriate IDE support. There is no such limitation as with XML, you are free to
define your concrete syntax as you like. It may be as concise and suggestive as possible
being a best match for your particular domain. The hard task of reading your model,
working with it and writing it back to your syntax is greatly simplified by Xtext.

115

14. The Grammar Language

The grammar language is the corner stone of Xtext. It is a domain-specific language,
carefully designed for the description of textual languages. The main idea is to describe
the concrete syntax and how it is mapped to an in-memory representation - the semantic
model. This model will be produced by the parser on-the-fly when it consumes an input
file.

14.1. A First Example

To get an idea of how it works we’ll start by implementing a simple example introduced
by Martin Fowler. It’s mainly about describing state machines that are used as the
(un)lock mechanism of secret compartments. People who have secret compartments
control their access in a very old-school way, e.g. by opening a draw first and turning
on the light afterwards. Then the secret compartment, for instance a panel, opens up.
One of those state machines could look like this:

events
doorClosed D1CL
drawOpened D2OP
lightOn L1ON
doorOpened D1OP
panelClosed PNCL
end

resetEvents
doorOpened D1OP

end

commands
unlockPanel PNUL
lockPanel PNLK
lockDoor D1LK
unlockDoor D1UL

end

state idle
actions {unlockDoor lockPanel}
doorClosed => active

end

116

http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://martinfowler.com/bliki/SyntacticNoise.html

state active
drawOpened => waitingForLight
lightOn => waitingForDraw

end

state waitingForLight
lightOn => unlockedPanel

end

state waitingForDraw
drawOpened => unlockedPanel

end

state unlockedPanel
actions {unlockPanel lockDoor}
panelClosed => idle

end

What we have are a bunch of declared events, commands, and states. Some events are
additionally marked as being reset events. Within states there are references to declared
actions. Actions should be executed when entering the state. Furthermore, there are
transitions consisting of a reference to an event and a state.

The first thing that you have to do in order to implement this tiny state machine
example with Xtext, is to provide a grammar. It could look like this example:

grammar org.xtext.example.SecretCompartments
with org.eclipse.xtext.common.Terminals

generate secrets "http://www.eclipse.org/secretcompartment"

Statemachine :
’events’
(events+=Event)+

’end’
(’resetEvents’
(resetEvents+=[Event])+

’end’)?
’commands’
(commands+=Command)+

’end’
(states+=State)+;

Event :
name=ID code=ID;

Command :

117

name=ID code=ID;

State :
’state’ name=ID
(’actions’ ’{’ (actions+=[Command])+ ’}’)?
(transitions+=Transition)*

’end’;

Transition :
event=[Event] ’=>’ state=[State];

Martin Fowler uses this example throughout his book Domain Specific Languages to
implement external and internal DSLs using different technologies. Note, that none of his
implementations is nearly as readable and concise as the description in Xtext’s grammar
language above. That is of course because the grammar language is designed to do just
that, i.e. it is specific to the domain of language descriptions.

14.2. The Syntax

In the following the different concepts and syntactical constructs of the grammar lan-
guage are explained.

14.2.1. Language Declaration

Each Xtext grammar starts with a header that defines some properties of the grammar.

grammar org.xtext.example.SecretCompartments
with org.eclipse.xtext.common.Terminals

The first line declares the name of the language. Xtext leverages Java’s class path
mechanism. This means that the name can be any valid Java qualifier. The file name
needs to correspond to the language name and have the file extension .xtext. This means
that the name has to be SecretCompartments.xtext and must be placed in a package
org.xtext.example on your project’s class path. In other words, your .xtext file has to
reside in a Java source folder to be valid.

The second aspect that can be deduced from the first line of the grammar is its rela-
tionship to other languages. An Xtext grammar can declare another existing grammar
to be reused. The mechanism is called grammar mixin (§14.4)).

14.2.2. EPackage Declarations

Xtext parsers create in-memory object graphs while consuming text. Such object-graphs
are instances of EMF Ecore models. An Ecore model basically consists of an EPackage
containing EClasses, EDataTypes and EEnums (see the section on EMF (§21.1) for

118

http://martinfowler.com/books/dsl.html

more details) and describes the structure of the instantiated objects. Xtext can infer
Ecore models from a grammar (see Ecore model inference (§14.3)) but it is also possible
to import existing Ecore models. You can even mix both approaches and use multiple
existing Ecore models and infer some others from a single grammar. This allows for easy
reuse of existing abstractions while still having the advantage of short turnarounds with
derived Ecore models.

EPackage Generation

The easiest way to get started is to let Xtext infer the Ecore model from your grammar.
This is what is done in the secret compartment example. The generate declaration in
the grammar advises the framework to do so:

generate secrets ’http://www.eclipse.org/secretcompartment’
That statement could actually be read as: generate an EPackage with the name secrets

and the nsURI ”http://www.eclipse.org/secretcompartment”. Actually these are the
mandatory properties that are necessary to create an empty EPackage. Xtext will then
add EClasses with EAttributes and EReferences for the different parser rules in your
grammar, as described in Ecore model inference (§14.3).

EPackage Import

If you already have an existing EPackage, you can import it using its namespace URI or
a resource URI. An URI (Uniform Resource Identifier) provides a simple and extensible
means for identifying an abstract or physical resource. For all the nifty details about
EMF URIs please refer to its documentation. It is strongly recommended to use the
namespace URI instead of the resource uri because it is independent from the concrete
location in the file system and much more portable across different machines, easier
to configure in the workflow and works better with language mixins. The import via
platform URIs or file URIs can be considered deprecated and is only supported for
backwards compatibility reasons.

Using Namespace URIs to Import Existing EPackages

You can use namespace URI in order to import existing EPackage. This is generally
preferable. The package will be read from the Xtext index and therefore your grammar
is independent from the concrete location of the respective ecore file. You have to make
sure though, that the ecore file is contained in a project, that is managed by Xtext.
Therefore the project has to have to Xtext project nature attached. Ecore files that
reside in referenced Java archives (JARs) are automatically picked up and indexed if the
referencing project itself is an Xtext project.

To import an EPackage, you have to state its namespace URI like this:
import ”http://www.xtext.org/example/Domainmodel” as dmodel
In order to be able to find the referenced package in the language generator, some

configuration values have to be set. It is usually the easiest way to register the generated

119

http://www.ietf.org/rfc/rfc2396.txt

EPackage interface in the workflow. The StandaloneSetup offers the respective methods
to achieve this. Simply state something like this in the workflow:

bean = StandaloneSetup {
platformUri = "${runtimeProject}/../.."
scanClassPath = true
registerGeneratedEPackage =
"org.eclipse.xtext.example.domainmodel.domainmodel.DomainmodelPackage"
registerGenModelFile =
"platform:/resource/.../path/to/Domainmodel.genmodel"

}

The registered genmodel is necessary to tell the code generator how the referenced Java
classes are named. Please see below for alternatives that allow to register the genmodel,
too. They may be handy if you create the genmodel in the workflow itself.

If the generated EPackage interface is not available when the language workflow is
executed, you can use another approach to register the reference packages. This may
happen if your want to generate EMF classes and the language infrastructure in one and
the same workflow. The section in the workflow, that refers the your grammar, allows
to set additional resources that should be loaded prior to loading the grammar file. The
ecore files that contain the referenced EPackages are a good candidate for preloaded
resources.

language = {
loadedResource =
"platform:/resource/.../path/to/Domainmodel.ecore"
uri = grammarURI

}

You can use either platform URIs or class path URIs to list the required ecore files
(see below for details on both URI schemes).

Important note: EPackages have to refer to each other by means of platform-resource
or platform-plugin URIs. Otherwise you’ll get validation errors in the grammar editor.
However, it’ll provide quick fixes to update the ecore files accordingly. There is only one
exception to the rule: If you refer to data types from the ecore package or directly to
EObject, the namespace URI is valid, too. This is due to special assignability rules for
these types. If you craft the EPackage manually, you’ll usually face no problems due to
these constraints since the reflective Ecore editor inserts platform URIs by default. The
other cases and legacy packages (those that were tailored to match the restrictions of
older Xtext versions) can be converted with the quick fixes in the grammar editor.

If you used platform-plugin URIs in the ecore files and cannot use the generated
EPackage in the workflow, you’ll have to register URI mappings from platform-plugin
to platform-resource.

120

bean = StandaloneSetup {
platformUri = "${runtimeProject}/../.."
scanClassPath = true
uriMap = {
from = "platform:/plugin/some.plugin/model/File.ecore"
to = "platform:/resource/some.plugin/model/File.ecore"

}
// assuming that Domainmodel.ecore uses
// platform:/plugin/some.plugin/model/File.ecore
registerEcoreFile =
"platform:/resource/.../path/to/Domainmodel.ecore"
registerGenModelFile =
"platform:/resource/.../path/to/Domainmodel.genmodel"

}

If you face problems with that approach, it may be necessary to explicitly load the
referenced packages in the language configuration of the workflow. You may run into
this as soon as you refer to elements from Ecore.ecore and want to generated the EMF
classes from within the same workflow.

language = {
loadedResource = "platform:/resource/.../path/to/Domainmodel.ecore"
loadedResource = "platform:/plugin/some.plugin/model/File.ecore"

uri = "classpath:/.../path/to/Domainmodel.xtext"
..

}

Using Resource URIs to Import Existing EPackages - Deprecated

In order to import an existing Ecore model, you’ll have to have the *.ecore file describing
the EPackage you want to use somewhere in your workspace. To refer to that file you
make use of the platform:/resource scheme. Platform URIs are a special EMF concept
which allow to reference elements in the workspace independent of the physical location
of the workspace. It is an abstraction that uses the Eclipse workspace concept as the
logical root of each project.

An import statement referring to an Ecore file by a platform:/resource/ -URI looks
like this:

import ’platform:/resource/my.project/model/SecretCompartments.ecore’
If you want to mix generated and imported Ecore models you’ll have to configure the

generator fragment in your MWE file responsible for generating the Ecore classes with
resource URIs that point to the generator models (§21.2) of the referenced Ecore models.

121

The *.genmodel provides all kind of generator configuration used by EMF’s code
generator. Xtext will automatically create a generator model for derived EPackages, but
if it references an existing, imported Ecore model, the code generator needs to know how
that code was generated in order to generate valid Java code.

Example:

fragment = org.eclipse.xtext.generator.ecore.EcoreGeneratorFragment {
referencedGenModels =
"platform:/resource/my.project/model/SecretCompartments.genmodel"

}

Using Class Path URIs to Import Existing EPackages - Deprecated

We usually like to leverage Java’s class path mechanism, because is is well understood
and can be configured easily with Eclipse. Furthermore it allows us to package libraries
as jars. If you want to reference an existing *.ecore file which is contained in a jar, you
can make use of the ’classpath:’ URI scheme we’ve introduced. For instance if you want
to reference Java elements, you can use the JvmType Ecore model which is shipped as
part of Xtext.

Example:
import ’classpath:/model/JvmTypes.ecore’ as types
As with platform resource URIs you’ll also have to tell the generator where the corre-

sponding *.genmodel can be found:

fragment = org.eclipse.xtext.generator.ecore.EcoreGeneratorFragment {
referencedGenModels =
"classpath:/model/JvmTypes.genmodel"

}

See the section on Referring Java Types (§18.2) for a full explanation of this useful
feature.

Ecore Model Aliases for EPackages

If you want to use multiple EPackages you need to specify aliases in the following way:

generate secrets ’http://www.eclipse.org/secretcompartment’
import ’http://www.eclipse.org/anotherPackage’ as another

122

When referring to a type somewhere in the grammar you need to qualify the reference
using that alias (example another::SomeType). We’ll see later where such type references
occur.

It is also supported to put multiple EPackage imports into one alias. This is no
problem as long as there are not any two EClassifiers with the same name. In that case
none of them can be referenced. It is even possible to import multiple and generate one
Ecore model and declare all of them with same alias. If you do so, for a reference to an
EClassifier first the imported EPackages are scanned before it is assumed that a type
needs to be generated into the inferred package.

Note, that using this feature is not recommended, because it might cause problems,
which are hard to track down. For instance, a reference to classA would as well be linked
to a newly created EClass, because the corresponding type in http://www.eclipse.org/packContainingClassA
is spelled with a capital letter.

14.2.3. Rules

Basically parsing can be separated in the following phases.

1. Lexing

2. Parsing

3. Linking

4. Validation

Terminal Rules

In the first stage called lexing, a sequence of characters (the text input) is transformed
into a sequence of so called tokens. In this context, a token is sort of a strongly typed
part or region of the input sequence. It consists of one or more characters and was
matched by a particular terminal rule or keyword and therefore represents an atomic
symbol. Terminal rules are also referred to as token rules or lexer rules. There is an
informal naming convention that names of terminal rules are all upper-case.

In the secret compartments example there are no explicitly defined terminal rules, since
it only uses the ID rule which is inherited from the grammar org.eclipse.xtext.common.Terminals
(cf. Grammar Mixins (§14.4)). Therein the ID rule is defined as follows:

terminal ID :
(’^’)?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

It says that a token ID starts with an optional ’ˆ’ character (caret), followed by a
letter (’a’..’z’|’A’..’Z’) or underscore ’ ’ followed by any number of letters, underscores
and numbers (’0’..’9’).

123

The caret is used to escape an identifier if there are conflicts with existing keywords.
It is removed by the ID rule’s ValueConverter (§16.8).

This is the simplified formal definition of terminal rules:

TerminalRule :
’terminal’ name=ID (’returns’ type=TypeRef)? ’:’
alternatives=TerminalAlternatives ’;’

;

Note, that the order of terminal rules is crucial for your grammar, as they may shadow
each other. This is especially important for newly introduced rules in connection with
imported rules from used grammars.

It’s almost in any case recommended to use data type rules instead. Let’s assume
you want to add a rule to allow fully qualified names in addition to simple IDs. Since
a qualified name with only one segment looks like a plain ID, you should implement it
as a data type rule (§14.2.6), instead of adding another terminal rule. The same rule of
thumb applies to floating point literals, too.

Return Types

Each terminal rule returns an atomic value (an Ecore EDataType). By default, it’s
assumed that an instance of ecore::EString) should be returned. However, if you want
to provide a different type you can specify it. For instance, the rule INT is defined as:

terminal INT returns ecore::EInt :
(’0’..’9’)+;

This means that the terminal rule INT returns instances of ecore::EInt. It is possible to
define any kind of data type here, which just needs to be an instance of ecore::EDataType.
In order to tell the framework how to convert the parsed string to a value of the declared
data type, you need to provide your own implementation of IValueConverterService (cf.
value converters (§16.8)). The value converter is also the service that allows to remove
escape sequences or semantically unnecessary character like quotes from string literals
or the caret ’ˆ’ from identifiers. Its implementation needs to be registered as a service
(cf. Service Framework (§15.2)).

Extended Backus-Naur Form Expressions

Terminal rules are described using Extended Backus-Naur Form-like (EBNF) expres-
sions. The different expressions are described in the following. Each of these expressions
allows to define a cardinality. There are four different possible cardinalities:

124

1. exactly one (the default, no operator)

2. one or none (operator ?)

3. any (zero or more, operator *)

4. one or more (operator +)

Keywords / Characters

Keywords are a kind of terminal rule literals. The ID rule in org.eclipse.xtext.common.Terminals
for instance starts with a keyword:

terminal ID : ’ˆ’? ;
The question mark sets the cardinality to none or one (i.e. optional) like explained

above.
Note that a keyword can have any length and contain arbitrary characters.
The following standard Java notations for special characters are allowed: \n, \r, \t,
\b, \f and the quoted unicode character notation, such as \u123.

Character Ranges

A character range can be declared using the .. operator.
Example:
terminal INT returns ecore::EInt: (’0’..’9’)+;
In this case an INT is comprised of one or more (note the + operator) characters

between (and including) ’0’ and ’9’.

Wildcard

If you want to allow any character you can simple write the wildcard operator . (dot):
Example:

terminal FOO : ’f’ . ’o’;
The rule above would allow expressions like foo, f0o or even f o.

Until Token

With the until token it is possible to state that everything should be consumed until a
certain token occurs. The multi-line comment is implemented this way:

terminal ML COMMENT : ’/*’ -> ’*/’;
This is the rule for Java-style comments that begin with /* and end with */.

Negated Token

All the tokens explained above can be inverted using a preceding exclamation mark:
terminal BETWEEN HASHES : ’#’ (!’#’)* ’#’;

125

Rule Calls

Rules can refer to other rules. This is simply done by using the name of the rule to
be called. We refer to this as rule calls. Rule calls in terminal rules can only point to
terminal rules.

Example:
terminal DOUBLE : INT ’.’ INT;
Note: It is generally not a good idea to implement floating point literals with terminal

rules. You should use data type rules instead for the above mentioned reasons.

Alternatives

Alternatives allow to define multiple valid options in the input file. For instance, the
white space rule uses alternatives like this:

terminal WS : (’ ’|’\t’|’\r’|’\n’)+;
That is a WS can be made of one or more white space characters (including ’ ’, ’\t’,

’\r’, ’\n’).

Groups

Finally, if you put tokens one after another, the whole sequence is referred to as a group.
Example:

terminal ASCII : ’0x’ (’0’..’7’) (’0’..’9’|’A’..’F’);
That is the 2-digit hexadecimal code of ASCII characters.

Terminal Fragments

Since terminal rules are used in a stateless context, it’s not easily possible to reuse parts
of their definition. Fragments solve this problem. They allow the same EBNF elements
as terminal rules do but may not be consumed by the lexer. Instead, they have to be
used by other terminal rules. This allows to extract repeating parts of a definition:

terminal fragment ESCAPED_CHAR : ’\\’ (’n’|’t’|’r’|’\\’);
terminal STRING :

’"’ (ESCAPED_CHAR | !(’\\’|’"’))* ’"’ |
"’" (ESCAPED_CHAR | !(’\\’|"’"))* "’"

;

EOF - End Of File

The EOF (End Of File) token may be used to describe that the end of the input stream
is a valid situation at a certain point in a terminal rule. This allows to consume the
complete remaining input of a file starting with a special delimiter.

terminal UNCLOSED STRING : ’”’ (!’”’)* EOF;

126

The EOF token cannot be negated (§14.2.3).

14.2.4. Parser Rules

The parser is fed with a sequence of terminals and walks through the so called parser
rules. Hence a parser rule - contrary to a terminal rule - does not produce a single
atomic terminal token but a tree of non-terminal and terminal tokens. They lead to a
so called parse tree (in Xtext it is also referred as node model). Furthermore, parser
rules are handled as kind of a building plan for the creation of the EObjects that form
the semantic model (the linked abstract syntax graph or AST). Due to this fact, parser
rules are even called production or EObject rules. Different constructs like actions and
assignments are used to derive types and initialize the semantic objects accordingly.

Extended Backus-Naur Form Expressions

Not all the expressions that are available in terminal rules can be used in parser rules.
Character ranges, wildcards, the until token and the negation as well as the EOF token
are only available for terminal rules.

The elements that are available in parser rules as well as in terminal rules are

1. Groups (§14.2.3),

2. Alternatives (§14.2.3),

3. Keywords (§14.2.3) and

4. Rule Calls (§14.2.3).

In addition to these elements, there are some expressions used to direct how the AST
is constructed. They are listed and explained in the following.

Assignments

Assignments are used to assign the consumed information to a feature of the currently
produced object. The type of the current object, its EClass, is specified by the return
type of the parser rule. If it is not explicitly stated it is implied that the type’s name
equals the rule’s name. The type of the assigned feature is inferred from the right hand
side of the assignment.

Example:

State :
’state’ name=ID
(’actions’ ’{’ (actions+=[Command])+ ’}’)?
(transitions+=Transition)*

’end’
;

127

The syntactic declaration for states in the state machine example starts with a keyword
state followed by an assignment:

name=ID
The left hand side refers to a feature name of the current object (which has the

EClass State in this case). The right hand side can be a rule call, a keyword, a cross-
reference (§14.2.4) or an alternative comprised by the former. The type of the feature
needs to be compatible with the type of the expression on the right. As ID returns an
EString in this case, the feature name needs to be of type EString as well.

Assignment Operators
There are three different assignment operators, each with different semantics.

1. The simple equal sign = is the straight forward assignment, and used for features
which take only one element.

2. The += sign (the add operator) expects a multi-valued feature and adds the value
on the right hand to that feature, which is a list feature.

3. The ?= sign (boolean assignment operator) expects a feature of type EBoolean
and sets it to true if the right hand side was consumed independently from the
concrete value of the right hand side.

The used assignment operator does not influence the cardinality of the expected sym-
bols on the right hand side.

Cross-References

A unique feature of Xtext is the ability to declare cross-links in the grammar. In tradi-
tional compiler construction the cross-links are not established during parsing but in a
later linking phase. This is the same in Xtext, but we allow to specify cross-link informa-
tion in the grammar. This information is used by the linker. The syntax for cross-links
is:

CrossReference :
’[’ type=TypeRef (’|’ ^terminal=CrossReferenceableTerminal)? ’]’

;

For example, the transition is made up of two cross-references, pointing to an event
and a state:

Transition :
event=[Event] ’=>’ state=[State]

;

128

It is important to understand that the text between the square brackets does not
refer to another rule, but to an EClass - which is a type and not a parser rule! This
is sometimes confusing, because one usually uses the same name for the rules and the
returned types. That is if we had named the type for events differently like in the
following the cross-reference needs to be adapted as well:

Transition :
event=[MyEvent] ’=>’ state=[State]

;

Event returns MyEvent :;

Looking at the syntax definition for cross-references, there is an optional part starting
with a vertical bar (pipe) followed by CrossReferenceableTerminal. This is the part
describing the concrete text, from which the cross-link later should be established. If
the terminal is omitted, it is expected to be the rule with the name ID - if one can be
found. The terminal is mandatory for languages that do not define a rule with the name
ID.

Have a look at the linking section (§16.6) in order to understand how linking is done.

Unordered Groups

The elements of an unordered group can occur in any order but each element must
appear once. Unordered groups are separated by &. The following rule Modifier allows
to parse simplified modifiers of the Java language:

Modifier:
static?=’static’? & final?=’final’? & visibility=Visibility;

enum Visibility:
PUBLIC=’public’ | PRIVATE=’private’ | PROTECTED=’protected’;

Therefore, the following sequences of tokens are valid:

public static final
static protected
final private static
public

129

However, since no unordered groups are used in the rule Modifier, the parser refuses
to accept this input lines:

static final static // ERROR: static appears twice
public static final private // ERROR: visibility appears twice
final // ERROR: visibility is missing

Note that if you want an element of an unordered group to appear once or not at
all, you have to choose a cardinality of ?. In the example, the visibility is mandatory,
while static or final are optional. Elements with a cardinality of * or + have to appear
continuously without interruption, i.e.

Rule:
values+=INT* & name=ID;

will parse these lines

0 8 15 x
x 0 8 15

but not does not consume the following sequence without raising an error

0 x 8 15 // wrong, as values may be interrupted by a name (ID)

Simple Actions

The object to be returned by a parser rule is usually created lazily on the first assignment.
Its type is determined from the specified return type of the rule which may have been
inferred from the rule’s name if no explicit return type is specified.

With Actions however, the creation of returned EObject can be made explicit. Xtext
supports two kinds of Actions:

1. Simple Actions, and

2. Assigned Actions.

130

If you want to enforce the creation of an instance with specific type you can use simple
actions. In the following example TypeB must be a subtype of TypeA. An expression A
ident should create an instance of TypeA, whereas B ident should instantiate TypeB.

If you don’t use actions, you’ll have to define an alternative and delegate rules to guide
the parser to the right types for the to-be-instantiated objects:

MyRule returns TypeA :
"A" name=ID |
MyOtherRule

;

MyOtherRule returns TypeB :
"B" name = ID

;

Actions however allow to make this explicit. Thereby they can improve the readability
of grammars.

MyRule returns TypeA :
"A" name=ID |
"B" {TypeB} name=ID

;

Generally speaking, the instance is created as soon as the parser hits the first as-
signment. However, actions allow to explicitly instantiate any EObject. The notation
{TypeB} will create an instance of TypeB and assign it to the result of the parser rule.
This allows to define parser rules without any assignment and to create objects without
the need to introduce unnecessary delegate rules.

Note: If a parser rule does not instantiate any object because it does not contain an
Action and no mandatory Assignment, you’ll likely end up with unexpected situations
for valid input files. Xtext detects this situation and will raise a warning for the parser
rules in question.

Unassigned Rule Calls

We previously explained, that the EObject to be returned is created lazily when the first
assignment occurs or as soon as a simple action is evaluated. There is another to find
the EObject to be returned. The concept is called Unassigned Rule Call.

Unassigned rule calls (the name suggests it) are rule calls to other parser rules, which
are not used within an assignment. The return value of the called rule becomes the
return value of the calling parser rule if it is not assigned to a feature.

131

With unassigned rule calls one can, for instance, create rules which just dispatch to
other rules:

AbstractToken :
TokenA |
TokenB |
TokenC

;

As AbstractToken could possibly return an instance of TokenA, TokenB or TokenC
its type must be a super type for all these types. Since the return value of the called
rule becomes the result of the current rule, it is possible to further change the state of
the AST element by assigning additional features.

Example:

AbstractToken :
(TokenA |
TokenB |
TokenC) (cardinality=(’?’|’+’|’*’))?

;

This way the cardinality is optional (last question mark) and can be represented by a
question mark, a plus, or an asterisk. It will be assigned to either an instance of type
TokenA, TokenB, or TokenC which are all subtypes of AbstractToken. The rule in this
example will never create an instance of AbstractToken directly but always return the
instance that has been created by the invoked TokenX rule.

Assigned Actions

Xtext leverages the powerful ANTLR parser which implements an LL(*) algorithm. Even
though LL parsers have many advantages with respect to readability, debuggability and
error recovery, there are also some drawbacks. The most important one is that it does
not allow left recursive grammars. For instance, the following rule is not allowed in
LL-based grammars, because Expression ’+’ Expression is left recursive:

Expression :
Expression ’+’ Expression |
’(’ Expression ’)’ |
INT

;

132

Instead one has to rewrite such things by ”left-factoring” it:

Expression :
TerminalExpression (’+’ TerminalExpression)?

;

TerminalExpression :
’(’ Expression ’)’ |
INT

;

In practice this is always the same pattern and therefore not too difficult. However, by
simply applying the Xtext AST construction features we’ve covered so far, a grammar
...

Expression :
{Operation} left=TerminalExpression (op=’+’ right=TerminalExpression)?

;

TerminalExpression returns Expression:
’(’ Expression ’)’ |
{IntLiteral} value=INT

;

... would result in unwanted elements in the AST. For instance the expression (42)
would result in a tree like this:

Operation {
left=Operation {
left=IntLiteral {
value=42

}
}

}

Typically one would only want to have one instance of IntLiteral instead.
This problem can be solved by using a combination of unassigned rule calls and as-

signed actions:

Expression :

133

TerminalExpression ({Operation.left=current}
op=’+’ right=Expression)?

;

TerminalExpression returns Expression:
’(’ Expression ’)’ |
{IntLiteral} value=INT

;

In the example above {Operation.left=current} is a so called tree rewrite action, which
creates a new instance of the stated EClass Operation and assigns the element currently
to-be-returned (the current variable) to a feature of the newly created object. The
example uses the feature left of the Operation instance to store the previously returned
Expression. In Java these semantics could be expressed as:

Operation temp = new Operation();
temp.setLeft(current);
current = temp;

14.2.5. Hidden Terminal Symbols

Because parser rules describe not a single token, but a sequence of patterns in the
input, it is necessary to define the interesting parts of the input. Xtext introduces the
concept of hidden tokens to handle semantically unimportant things like white spaces,
comments, etc. in the input sequence gracefully. It is possible to define a set of terminal
symbols, that are hidden from the parser rules and automatically skipped when they are
recognized. Nevertheless, they are transparently woven into the node model, but not
relevant for the semantic model.

Hidden terminals may optionally appear between any other terminals in any cardi-
nality. They can be described per rule or for the whole grammar. When reusing a
single grammar (§14.4) its definition of hidden tokens is reused, too. The grammar
org.eclipse.xtext.common.Terminals comes with a reasonable default and hides all com-
ments and white space from the parser rules.

If a rule defines hidden symbols, you can think of a kind of scope that is automatically
introduced. Any rule that is called transitively by the declaring rule uses the same
hidden terminals as the calling rule, unless it defines hidden tokens itself.

Person hidden(WS, ML_COMMENT, SL_COMMENT):
name=Fullname age=INT ’;’

;

134

Fullname:
(firstname=ID)? lastname=ID

;

The sample rule Person defines multiline comments (ML COMMENT), single-line
comments (SL COMMENT), and white space (WS) to be allowed between the name and
the age. Because the rule Fullname does not introduce an own set of hidden terminals,
it allows the same symbols to appear between firstname and lastname as the calling rule
Person. Thus, the following input is perfectly valid for the given grammar snippet:

John /* comment */ Smith // line comment
/* comment */

42 ; // line comment

A list of all default terminals like WS can be found in section Grammar Mixins (§14.4).

14.2.6. Data Type Rules

Data type rules are parsing-phase rules, which create instances of EDataType instead
of EClass. Thinking about it, one may discover that they are quite similar to terminal
rules. However, the nice thing about data type rules is that they are actually parser
rules and are therefore

1. context sensitive and

2. allow for use of hidden tokens.

Assuming you want to define a rule to consume Java-like qualified names (e.g. ”foo.bar.Baz”)
you could write:

QualifiedName :
ID (’.’ ID)*

;

In contrast to a terminal rule this is only valid in certain contexts, i.e. it won’t conflict
with the rule ID. If you had defined it as a terminal rule, it would possibly hide the simple
ID rule.

In addition when the QualifiedName been defined as a data type rule, it is allowed to
use hidden tokens (e.g. /* comment */ between the segment IDs and dots (e.g. foo/*
comment */. bar . Baz).

Return types can be specified in the same way as for terminal rules:

135

QualifiedName returns ecore::EString :
ID (’.’ ID)*

;

Note that rules that do not call other parser rules and do neither contain any actions
nor assignments (§14.2.4), are considered to be data type rules and the data type EString
is implied if none has been explicitly declared.

Value converters (§16.8) are used to transform the parsed string to the actually re-
turned data type value.

14.2.7. Enum Rules

Enum rules return enumeration literals from strings. They can be seen as a shortcut
for data type rules with specific value converters. The main advantage of enum rules is
their simplicity, type safety and therefore nice validation. Furthermore it is possible to
infer enums and their respective literals during the Ecore model transformation.

If you want to define a ChangeKind from org.eclipse.emf.ecore.change/model/Change.ecore
with ADD, MOVE and REMOVE you could write:

enum ChangeKind :
ADD | MOVE | REMOVE

;

It is even possible to use alternative literals for your enums or reference an enum value
twice:

enum ChangeKind :
ADD = ’add’ | ADD = ’+’ |
MOVE = ’move’ | MOVE = ’->’ |
REMOVE = ’remove’ | REMOVE = ’-’

;

Please note, that Ecore does not support unset values for enums. If you define a
grammar like

Element: ”element” name=ID (value=SomeEnum)?;
with the input of
element Foo
the resulting value of the element Foo will hold the enum value with the internal

representation of 0 (zero). When generating the EPackage from your grammar this will

136

http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/change/package-summary.html

be the first literal you define. As a workaround you could introduce a dedicated none-
value or order the enums accordingly. Note that it is not possible to define an enum
literal with an empty textual representation.

enum Visibility:
package | private | protected | public

;

You can overcome this by using an explicitly imported metamodel.

14.2.8. Syntactic Predicates

It’s sometimes not easily possible to define an LL(*) grammar for a given language that
parses all possible valid input files and still produces abstract syntax graphs that mimic
the actual structure of the files. There are even cases that cannot be described with an
unambiguous grammar. There are solutions that allow to deal with this problem:

• Enable Backtracking: Xtext allows to enable backtracking for the ANTLR parser
generator. This is usually not recommended since it influences error message strate-
gies at runtime and shadows actually existing problems in the grammar.

• Syntactic Predicates: The grammar language enables users to guide the parser in
case of ambiguities. This mechanism is achieved by syntactic predicates. Since
they affect only a very small part of the grammar, syntactic predicates are the
recommended approach to handle ANTLR error messages during the parser gen-
eration.

The classical example for ambiguous language parts is the Dangling Else Problem. A
conditional in a programming language usually looks like this:

if (isTrue())
doStuff();

else
dontDoStuff();

The problems becomes more obvious as soon as nested conditions are used:

if (isTrue())
if (isTrueAsWell())
doStuff();

else
dontDoStuff();

137

Where does the else branch belong to? This question can be answered by a quick
look into the language specification which tells that the else branch is part of the inner
condition. However, the parser generator cannot be convinced that easily. We have to
guide it to this decision point by means of syntactic predicates which are expressed by
a leading => operator.

Condition:
’if’ ’(’ condition=BooleanExpression ’)’
then=Expression
(=>’else’ else=Expression)?

The parser understands the predicate basically like this: If you are at this particular
decision point and you don’t know what to do, look for the else keyword and if it’s
present. Don’t try to choose the other option that would start with an else keyword,
too.

Well chosen predicates allow to solve most ambiguities and backtracking can often be
disabled.

First Token Set Predicates

Sometimes you need to put a syntactic predicate on a more complex rule, e.g. an
expression, which might be very long. For disambiguation it often is sufficient to only
look at the first token set. In those cases one can use the -> operator instead of =>
which tells the parser to just look at the first token and make the decision based on that.
This can heavily reduce the lookahead and as a consequence make the parser faster and
more robust to syntactic errors. This also affects the behavior of the IDE, such as content
assist, in a positive way.

14.3. Ecore Model Inference

The Ecore model (or meta model) of a textual language describes the structure of its
abstract syntax trees (AST).

Xtext uses Ecore’s EPackages to define Ecore models. Ecore models are declared to
be either inferred (generated) from the grammar or imported. By using the generate
directive, one tells Xtext to derive an EPackage from the grammar.

14.3.1. Type and Package Generation

Xtext creates

138

• an EPackage

– for each generate-package declaration. After the directive generate a list
of parameters follows. The name of the EPackage will be set to the first
parameter, its nsURI to the second parameter. An optional alias as the
third parameter allows to distinguish generated EPackages later. Only one
generated package declaration per alias is allowed.

• an EClass

– for each return type of a parser rule. If a parser rule does not define a return
type, an implicit one with the same name as the rule itself is assumed. You
can specify more than one rule that return the same type but only one EClass
will be generated.

– for each type defined in an action or a cross-reference.

• an EEnum

– for each return type of an enum rule.

• an EDataType

– for each return type of a terminal rule or a data type rule.

All EClasses, EEnums, and EDataTypes are added to the EPackage referred to by the
alias provided in the type reference they were created from.

14.3.2. Feature and Type Hierarchy Generation

While walking through the grammar, the algorithm keeps track of a set of the currently
possible return types to add features to.

• Entering a parser rule the set contains only the return type of the rule.

• Entering an element of an alternative the set is reset to the same state it was in
when entering the first option of the alternative.

• Leaving an alternative the set contains the union of all types at the end of each of
its paths.

• After an optional element, the set is reset to the same state it was before entering
it.

• After a mandatory (non-optional) rule call or mandatory action the set contains
only the return type of the called rule or action.

• An optional rule call does not modify the set.

• A rule call is optional, if its cardinality is ? or *.

While iterating the parser rules Xtext creates

139

• an EAttribute in each current return type

– of type EBoolean for each feature assignment using the ?= operator. No
further EReferences or EAttributes will be generated from this assignment.

– for each assignment with the = or += operator calling a terminal rule. Its
type will be the return type of the called rule.

• an EReference in each current return type

– for each assignment with the = or += operator in a parser rule calling a
parser rule. The EReference’s type will be the return type of the called
parser rule.

– for each assigned action. The reference’s type will be set to the return type
of the current calling rule.

Each EAttribute or EReference takes its name from the assignment or action that
caused it. Multiplicities will be 0..1 for assignments with the = operator and 0..* for
assignments with the += operator.

Furthermore, each type that is added to the currently possible return types automat-
ically extends the current return type of the parser rule. You can specify additional
common super types by means of ”artificial” parser rules, that are never called, e.g.

CommonSuperType:
SubTypeA | SubTypeB | SubTypeC;

14.3.3. Enum Literal Generation

For each alternative defined in an enum rule, the transformer creates an enum literal, as
long as no other literal with the same name can be found. The literal property of the
generated enum literal is set to the right hand side of the declaration. If it is omitted,
an enum literal with equal name and literal attributes is inferred.

enum MyGeneratedEnum:
NAME = ’literal’ | EQUAL_NAME_AND_LITERAL;

14.3.4. Feature Normalization

In the next step the generator examines all generated EClasses and lifts up similar
features to super types if there is more than one subtype and the feature is defined in
every subtypes. This does even work for multiple super types.

140

14.3.5. Error Conditions

The following conditions cause an error

• An EAttribute or EReference has two different types or different cardinality.

• There is an EAttribute and an EReference with the same name in the same EClass.

• There is a cycle in the type hierarchy.

• An new EAttribute, EReference or super type is added to an imported type.

• An EClass is added to an imported EPackage.

• An undeclared alias is used.

• An imported Ecore model cannot be loaded.

14.4. Grammar Mixins

Xtext supports the reuse of existing grammars. Grammars that are created via the Xtext
wizard use org.eclipse.xtext.common.Terminals by default which introduces a common
set of terminal rules and defines reasonable defaults for hidden terminals.

To reuse an existing grammar, make sure the grammar file is on the class path of the
inheriting language. If it is in a different plug-in, make sure to add a plug-in dependency
in the MANIFEST.MF.

grammar org.xtext.example.SecretCompartments
with org.eclipse.xtext.common.Terminals

generate secrets "http://www.eclipse.org/secretcompartment"

Statemachine: ..

Mixing another grammar into a language makes the rules defined in that grammar
referable. It is also possible to overwrite rules from the used grammar.

Example :

grammar my.SuperGrammar

generate super "http://my.org/super"

...
RuleA : "a" stuff=RuleB;
RuleB : "{" name=ID "}";

141

grammar my.SubGrammar with my.SuperGrammar

import "http://my.org/super"

...

Model : (ruleAs+=RuleA)*;

// overrides my.SuperGrammar.RuleB
RuleB : ’[’ name=ID ’]’;

Note that declared terminal rules always get a higher priority then imported terminal
rules.

In addition, you have to register the Ecore models used in your super grammar and
their corresponding generator models to the MWE2 workflow of the inheriting language,
e.g.

Workflow {
bean = StandaloneSetup {

scanClassPath = true
platformUri = "${runtimeProject}/.."
...
// add the FQN of the generated EPackage
registerGeneratedEPackage = "my.supergrammar.super.SuperPackage"
// add the platfrom resource URI of the corresponding Ecore genmodel
registerGenModelFile = "platform:/resource/my/src-gen/my/supergrammar/super/Super.genmodel"

}
//...

You might also want to read about EPackage imports (§14.2.2) for the inheriting
grammar.

14.5. Common Terminals

Xtext ships with a default set of predefined, reasonable and often required terminal rules.
The grammar for these common terminal rules is defined as follows:

grammar org.eclipse.xtext.common.Terminals
hidden(WS, ML_COMMENT, SL_COMMENT)
import "http://www.eclipse.org/emf/2002/Ecore" as ecore
terminal ID :

142

’^’?(’a’..’z’|’A’..’Z’|’_’)(’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;
terminal INT returns ecore::EInt:
(’0’..’9’)+;
terminal STRING :
’"’ (’\\’(’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’) | !(’\\’|’"’))* ’"’ |
"’" (’\\’(’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’) | !(’\\’|"’"))* "’";
terminal ML_COMMENT :
’/*’ -> ’*/’;
terminal SL_COMMENT :
’//’ !(’\n’|’\r’)* (’\r’? ’\n’)?;
terminal WS :
(’ ’|’\t’|’\r’|’\n’)+;
terminal ANY_OTHER:
.;

143

15. Configuration

15.1. The Language Generator

Xtext provides a lot of generic implementations for your language’s infrastructure but
also uses code generation to generate some of the components. Those generated compo-
nents are for instance the parser, the serializer, the inferred Ecore model (if any) and a
couple of convenient base classes for content assist, etc.

The generator also contributes to shared project resources such as the plugin.xml,
MANIFEST.MF and the Guice modules (§15.2.1).

Xtext’s generator uses a special DSL called MWE2 - the modeling workflow en-
gine (§19) to configure the generator.

15.1.1. A Short Introduction to MWE2

MWE2 allows to compose object graphs declaratively in a very compact manner. The
nice thing about it is that it just instantiates Java classes and the configuration is done
through public setter and adder methods as one is used to from Java Beans encapsulation
principles. An in-depth documentation can be found in the chapter MWE2 (§19).

Given the following simple Java class (POJO):

package com.mycompany;

public class Person {

private String name;

public void setName(String name) {
this.name = name;

}

private final List<Person> children = new ArrayList<Person>();

public void addChild(Person child) {
this.children.add(child);

}
}

One can create a family tree with MWE2 easily by describing it in a declarative manner
without writing a single line of Java code and without the need to compile classes:

144

module com.mycompany.CreatePersons

Person {
name = "Grandpa"
child = {
name = "Father"
child = {
name = "Son"

}
}

}

These couple of lines will, when interpreted by MWE2, result in an object tree con-
sisting of three instances of com.mycompany.Person. The interpreter will basically do
the same as the following main method:

package com.mycompany;

public class CreatePersons {
public static void main(String[] args) {
Person grandpa = new Person();
grandpa.setName("Grandpa");
Person father = new Person();
father.setName("Father");
grandpa.addChild(father);
Person son = new Person();
son.setName("Son");
father.addChild(son);

}
}

And this is how it works: The root element is a plain Java class name. As the
module is a sibling to the class com.mycompany.Person it is not necessary to use use

145

fully qualified name. There are other packages implicitly imported into this workflow as
well to make it convenient to instantiate actual workflows and components, but these
ones are covered in depth in the appropriate chapter (§19). The constructed objects
are furthermore configured according to the declaration in the module, e.g. a second
instance of Person will be created and added to the list of children of ”Grandpa” while
the third person - the class is inferred from the assigned feature - becomes a child of
”Father”. All three instances will have their respective name assigned via a reflective
invocation of the setName method. If one wants to add another child to ”Father”, she
can simply repeat the child assignment:

child = com.mycompany.Person {
name = "Father"
child = {
name = "Son"

}
child = {
name = "Daughter"

}
}

As you can see in the example above MWE2 can be used to instantiate arbitrary Java
object models without any dependency or limitation to MWE2 specific implementations.

Tip Whenever you are in an *.mwe2 file and wonder what kind of configuration the
underlying component may accept: Just use the Content Assist in the MWE2 Editor or
navigate directly to the declaration of the underlying Java implementation by means of
F3 (Go To Declaration).

This is the basic idea of the MWE2 language. There are of course a couple of additional
concepts and features in the language and we also have not yet talked about the runtime
workflow model. Please refer to the dedicated MWE2 reference documentation (§19)
for additional information. We will now have a look at the component model used to
configure the Language Generator.

15.1.2. General Architecture

A language generator is composed of so called language configurations. For each language
configuration a URI pointing to its grammar file and the file extensions for the DSL must
be provided. In addition, a language is configured with a list of generator fragments.
The whole generator is composed of theses fragments. We have fragments for generating
parsers, the serializer, the EMF code, the outline view, etc.

Generator Fragments

The list of grammar fragments forms a chain of responsibility, that is they each get the
chance to contribute to the generation of language infrastructure components and are

146

called in the declared order. Each fragment gets the grammar of the language as an
EMF model passed in and is able to generate code in one of the configured locations
and contribute to several shared artifacts. A generator fragment must implement the
interface IGeneratorFragment.

There is usually no need to write your own generator fragments and only rarely you
might want to extend an existing one.

Configuration

As already explained we use MWE2 from EMFT in order to instantiate, configure and
execute this structure of components. In the following we see an exemplary language
generator configuration written in MWE2 configuration code:

module org.xtext.example.MyDsl

import org.eclipse.emf.mwe.utils.*
import org.eclipse.xtext.generator.*
import org.eclipse.xtext.ui.generator.*

var grammarURI = "classpath:/org/xtext/example/MyDsl.xtext"

147

var file.extensions = "mydsl"
var projectName = "org.xtext.example.mydsl"
var runtimeProject = "../${projectName}"

Workflow {
bean = StandaloneSetup {
platformUri = "${runtimeProject}/.."

}

component = DirectoryCleaner {
directory = "${runtimeProject}/src-gen"

}

component = DirectoryCleaner {
directory = "${runtimeProject}.ui/src-gen"

}

component = Generator {
pathRtProject = runtimeProject
pathUiProject = "${runtimeProject}.ui"
projectNameRt = projectName
projectNameUi = "${projectName}.ui"

language = {
uri = grammarURI
fileExtensions = file.extensions

// Java API to access grammar elements
fragment = grammarAccess.GrammarAccessFragment {}

/* more fragments to configure the language */
...

}
}

}

Here the root element is Workflow and is part of the very slim runtime model shipped
with MWE2. It accepts beans and components. A var declaration is a first class con-
cept of MWE2’s configuration language and defines a variable which can be reset from
outside, i.e. when calling the module. It allows to externalize some common configura-
tion parameters. Note that you can refer to the variables using the ${variable-name}
notation.

The method Workflow.addBean(Object) does nothing but provides a means to apply
global side-effects, which unfortunately is required sometimes. In this example we do a
so called EMF stand-alone setup. This class initializes a bunch of things for a non-OSGi
environment that are otherwise configured by means of extension points, e.g. it allows
to populate EMF’s singletons like the EPackage.Registry.

148

Following the bean assignment there are three component elements. The Work-
flow.addComponent() method accepts instances of IWorkflowComponent, which is the
primary concept of MWE2’s workflow model. The language generator component it-
self is an instance of IWorkflowComponent and can therefore be used within MWE2
workflows.

15.1.3. Standard Generator Fragments

In the following table the most important standard generator fragments are listed. Please
refer to the Javadocs for more detailed documentation. Also have a look at what the
Xtext wizard provides and how the workflow configuration in the various example lan-
guages look like.

Class Generated Artifacts Related Documentation
EcoreGeneratorFragment EMF code for generated

models
Model inference (§14.3)

XtextAntlrGeneratorFragment ANTLR grammar, parser,
lexer and related services

GrammarAccessFragment Access to the grammar
ResourceFactoryFragment EMF resource factory Xtext Resource (§21.3)
ParseTreeConstructorFragment Model-to-text serialization Serialization (§16.9)

ImportNamespacesScopingFragmentIndex-based scoping Index-based namespace scop-
ing (§16.7.1)

JavaValidatorFragment Model validation Model validation (§16.5.2)
FormatterFragment Code formatter Code formatter (§16.10)
LabelProviderFragment Label provider Label provider (§17.1)
OutlineTreeProviderFragment Outline view configuration Outline (§17.5)

JavaBasedContentAssistFragmentJava-based content assist Content assist (§17.2)

XtextAntlrUiGeneratorFragmentContent assist helper based
on ANTLR

Content assist (§17.2)

15.2. Dependency Injection in Xtext with Google Guice

All Xtext components are assembled by means of Dependency Injection (DI). This means
basically that whenever some code is in need for functionality (or state) from another
component, one just declares the dependency rather then stating how to resolve it, i.e.
obtaining that component.

For instance when some code wants to use a scope provider, it just declares a field (or
method or constructor) and adds the Inject annotation:

public class MyLanguageLinker extends Linker {

149

@Inject
private IScopeProvider scopeProvider;

}

It is not the duty of the client code to care about where the IScopeProvider comes
from or how it is created. When above’s class is instantiated, Guice sees that it requires
an instance of IScopeProvider and assigns it to the specified field or method parameter.
This of course only works, if the object itself is created by Guice. In Xtext almost every
instance is created that way and therefore the whole dependency net is controlled and
configured by the means of Google Guice.

Guice of course needs to know how to instantiate real objects for declared depen-
dencies. This is done in so called Modules. A Module defines a set of mappings from
types to either existing instances, instance providers or concrete classes. Modules are
implemented in Java. Here’s an example:

public class MyDslRuntimeModule
extends AbstractMyDslRuntimeModule {

@Override
public void configure(Binder binder) {
super.configure(binder);
binder
.bind(IScopeProvider.class)
.to(MyConcreteScopeProvider.class);

}
}

With plain Guice modules one implements a method called configure and gets a Binder
passed in. That binder provides a fluent API to define the mentioned mappings. This
was just a very brief and simplified description. We highly recommend to have a look at
the website Google Guice to learn more.

15.2.1. The Module API

Xtext comes with a slightly enhanced module API. For your language you get two dif-
ferent modules: One for the runtime bundle which is used when executing your language
infrastructure outside of Eclipse such as on the build server. The other is located in
the UI bundle and adds or overrides bindings when Xtext is used within an Eclipse
environment.

The enhancement we added to Guice’s Module API is that we provide an abstract base
class, which reflectively looks for certain methods in order to find declared bindings. The
most common kind of method is :

150

http://code.google.com/p/google-guice/

public Class<? extends IScopeProvider> bindIScopeProvider() {
return MyConcreteScopeProvider.class;

}

which would do the same as the code snippet above. It simply declares a binding from
IScopeProvider to MyConcreteScopeProvider. That binding will make Guice instanti-
ate and inject a new instance of MyConcreteScopeProvider whenever a dependency to
IScopeProvider is declared.

Having a method per binding allows to deactivate individual bindings by overriding
the corresponding methods and either change the binding by returning a different target
type or removing that binding completely by returning null.

There are two additional kinds of binding-methods supported. The first one allows to
configure a provider. A Provider is an interface with just one method :

public interface Provider<T> {

/**
* Provides an instance of {@code T}. Must never return {@code null}.
*/
T get();

}

This one can be used if you need a hook whenever an instance of a certain type is
created. For instance if you want to provide lazy access to a singleton or you need to do
some computation each time an instance is created (i.e. factory). If you want to point
to a provider rather than to a concrete class you can use the following binding method.

public Class<? extends Provider<IScopeProvider>>
provideIScopeProvider() {
return MyConcreteScopeProviderFactory.class;

}

Note: Please forgive us the overuse of the term provider. The IScopeProvider is not a
Guice Provider.

That binding tells Guice to instantiate MyConcreteScopeProviderFactory and invoke
get() in order to obtain an instance of IScopeProvider for clients having declared a
dependency to that type. Both mentioned methods are allowed to return an instance
instead of a type. This may be useful if some global state should be shared in the
application:

151

public Provider<IScopeProvider> provideIScopeProvider() {
return new MyConcreteScopeProviderFactory();

}

or

public IScopeProvider bindIScopeProvider() {
return new MyConcreteScopeProvider();

}

respectively.
The last binding method provided by Xtext allows to do anything you can do with

Guice’s binding API, since it allows you to use the Binder directly. If your method’s
name starts with the name ’configure’, has a return type void and accepts one argument
of type Binder:

public void configureIScopeProvider(Binder binder) {
binder.bind(IScopeProvider.class).to(MyConcreteScopeProvider.class);

}

15.2.2. Obtaining an Injector

In every application wired up with Guice there is usually one point where you initialize
an Injector using the modules declared. That injector is used to create the root instance
of the whole application. In plain Java environments this is something that’s done in
the main method. It could look like this:

public static void main(String[] args) {
Injector injector = Guice.createInjector(
new MyDslRuntimeModule());

MyApplication application = injector.getInstance(
MyApplication.class);

application.run();
}

In Xtext, you should never instantiate the injector of your language yourself. The
sections Runtime Setup (§16.1) and Equinox Setup (§16.2) explain how to access it in
different scenarios.

152

These are the basic ideas around Guice and the small extension Xtext provides on top.
For more information we strongly encourage you to read through the documentation on
the website of Google Guice.

15.3. Continuous Integration (with Maven)

There are two aspects to consider when it comes to continuous integration. Firstly you
may want to have a continuous build of your language, that runs all tests and creates an
Eclipse update site and other needed artifacts and secondly you may want to have your
language and its corresponding code generator integrated in your application builds. We
will discuss both cases in the section along a set of example projects, which you can
clone, inspect or download from https://github.com/svenefftinge/maven-xtext-example.

To follow this section you need to have a basic understanding of how Maven works.
Please read a tutorial on Maven if you don’t know anything about it.

15.3.1. An overview of the example projects

If you have a look at the example, you’ll find seven different projects of which six are for
the various aspects of the language and its build. First we have the language’s runtime
project, ui project and test project. In addition we need a feature project, an update
site project and a project where we put the parent pom. The seventh project is called
example-project and is really a small application project that uses the built language
and triggers the code generator through a dedicated maven plug-in. Let’s first have a
look at how to build the language.

15.3.2. Building an Xtext language with Maven and Tycho

Although the runtime aspects of an Xtext language is not dependent on Eclipse or its
OSGi container, an Xtext language is developed in the form of OSGi bundles. For
this kind of builds most people rely on Tycho, which is an OSGi/P2 adapter plug-in
for Maven builds. Tycho obtains much information from the OSGi bundle’s manifest.
Additionally needed information is configured through the pom.xml file which sits at the
root of each project.

The releng project (my.mavenized.herolanguage.releng)

All of the projects are aggregated in a parent pom in my.mavenized.herolanguage.releng.
Information defined in the parent pom is automatically inherited by the aggregated child
projects, so you don’t need to reconfigure the same information over and over again. Here
we have configured two additional plug-ins:

153

http://code.google.com/p/google-guice/
https://github.com/svenefftinge/maven-xtext-example
http://eclipse.org/tycho/

• The Xtend compiler plug-in will generate the Java source code for any Xtend files
during the ’generate-sources’ phase

<pluginManagement>
<plugins>
<!-- xtend-maven-plugin is in pluginManagement instead of in plugins
so that it doesn’t run before the exec-maven-plugin’s *.mwe2 gen;
this way we can list it after.
-->

<plugin>
<groupId>org.eclipse.xtend</groupId>
<artifactId>xtend-maven-plugin</artifactId>
<version>${xtext.version}</version>
<executions>

<execution>
<goals>
<goal>compile</goal>
<goal>xtend-install-debug-info</goal>
<goal>testCompile</goal>
<goal>xtend-test-install-debug-info</goal>

</goals>
</execution>

</executions>
<configuration>

<outputDirectory>xtend-gen</outputDirectory>
</configuration>

</plugin>
</plugins>

</pluginManagement>

• The Tycho plug-in will pick up and use Eclipse plug-in specific configuration data
from the projects in order to build Eclipse conformant OSGi bundles, features and
an update site.

<plugins>
<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-maven-plugin</artifactId>
<version>${tycho-version}</version>
<extensions>true</extensions>

</plugin>
</plugins>

154

The update site project (my.mavenized.herolanguage.updatesite)

The project my.mavenized.herolanguage.updatesite denotes the updatesite project and
only contains a pom.xml and a file called category.xml. The latter includes information
about which features are contained in the update site. As you can see, the category.xml
file points to the single feature, which is defined in ...

The feature project (my.mavenized.herolanguage.sdk)

This is another project made up on configuration data solely. It contains the feature.xml
file which points to the Eclipse plug-ins (bundles) included in this feature.

The core language project (my.mavenized.herolanguage)

The pom.xml for the language project contains information about how Maven should run
Xtext’s code generator. The first used plug-in cleans the directories containing generated
resources during the clean phase:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-clean-plugin</artifactId>
<version>2.5</version>
<configuration>
<filesets>
<fileset>

<directory>${basedir}/src-gen</directory>
</fileset>
<fileset>

<directory>${basedir}/xtend-gen</directory>
</fileset>
<!-- clean ui plugin as well -->
<fileset>

<directory>${basedir}/../${project.artifactId}.ui/src-gen</directory>
</fileset>
<fileset>

<directory>${basedir}/../${project.artifactId}.ui/xtend-gen</directory>
</fileset>
<!-- clean test fragment as well -->
<fileset>

<directory>${basedir}/../${project.artifactId}.tests/src-gen</directory>
</fileset>
<fileset>

<directory>${basedir}/../${project.artifactId}.tests/xtend-gen</directory>
</fileset>

</filesets>
</configuration>

</plugin>

155

The second plug-in invokes the MWE2 file through a standard Java process:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>

<goal>java</goal>
</goals>

</execution>
</executions>
<configuration>
<includeProjectDependencies>false</includeProjectDependencies>
<includePluginDependencies>true</includePluginDependencies>
<mainClass>org.eclipse.emf.mwe2.launch.runtime.Mwe2Launcher</mainClass>
<arguments>
<argument>file://${project.basedir}/src/my/mavenized/GenerateHeroLanguage.mwe2</argument>

</arguments>
</configuration>
<dependencies>
<dependency>
<groupId>org.eclipse.xtext</groupId>
<artifactId>org.eclipse.xtext.xtext</artifactId>
<version>2.7.1</version>

</dependency>
<dependency>
<groupId>org.eclipse.xtext</groupId>
<artifactId>org.eclipse.xtext.xbase</artifactId>
<version>2.7.1</version>

</dependency>
</dependencies>

</plugin>

You need to adjust the mwe file as well to be able to run it this way. There are three
important adjustments you need to make:

First you need to use a platform:resource URI instead of a classpath URI to point
to your Xtext grammar file. This is because we don’t have the source folder on the
classpath of the exec plug-in. To do so open the mwe file and change the declaration of
the grammarURI to a platform URI similar to how it is done in the example:

// grammarURI has to be platform:/resource as it is not on the classpath

156

var grammarURI = "platform:/resource/${projectName}/src/my/mavenized/HeroLanguage.xtext"

Next we need to register some URI mappings and make sure we use an XtextResourceSet
in the build process. This is only needed if you have ecore file references (also transi-

tively) via platform URI. As we are using Xbase in the example it is needed to resolve
the URIs to the Xbase related EPackages.

// use an XtextResourceset throughout the process, which is able to resolve classpath:/ URIs.
resourceSet = org.eclipse.xtext.resource.XtextResourceSet:theResourceSet {}

// add mappings from platform:/resource to classpath:/
uriMap = {
from = "platform:/resource/org.eclipse.xtext.xbase/"
to = "classpath:/"

}
uriMap = {
from = "platform:/resource/org.eclipse.xtext.common.types/"
to = "classpath:/"

}

Finally we need to tell the generator to use the created XtextResourceSet by adding
this line :

....
language = auto-inject {
// make sure we use the resourceSet created during standalone setup.
forcedResourceSet = theResourceSet
...

15.3.3. Integration in Standard Maven Builds

Now that we can build our language we need to be able to integrate our language compiler
in the integration build of application projects. For that a dedicated maven-plugin is
available in Maven central. We now refer to the project example-project which is a
standard Java-project that shouldn’t contain any Eclipse plug-in specific information
nor should it be built with Tycho. Let’s have a look at the pom.xml and therein the
Xtext plug-in.

<plugin>
<groupId>org.eclipse.xtext</groupId>

157

<artifactId>xtext-maven-plugin</artifactId>
<version>2.7.1</version>
<executions>
<execution>
<goals>

<goal>generate</goal>
</goals>

</execution>
</executions>
<configuration>
<languages>
<!-- Add additional standalone setups if you have more than one language -->
<language>

<setup>my.mavenized.HeroLanguageStandaloneSetup</setup>
<outputConfigurations>
<outputConfiguration>
<outputDirectory>src/main/generated-sources/xtend/</outputDirectory>

</outputConfiguration>
</outputConfigurations>

</language>
</languages>

</configuration>
<dependencies>
<!-- add a dependency to the language core bundle, this will only be needed during geneeration and will not pollute your project’s classpath. -->
<dependency>
<groupId>my.mavenized.herolanguage</groupId>
<artifactId>my.mavenized.herolanguage</artifactId>
<version>1.0.0-SNAPSHOT</version>

</dependency>
</dependencies>

</plugin>

As the comments suggest, you may add multiple languages in the languages section.
A language will use the default outputConfiguration, but you can override the different
properties just as you can do within Eclipse preferences.

158

16. Runtime Concepts

Xtext itself and every language infrastructure developed with Xtext is configured and
wired-up using dependency injection (§15.2). Xtext may be used in different environ-
ments which introduce different constraints. Especially important is the difference be-
tween OSGi managed containers and plain vanilla Java programs. To honor these dif-
ferences Xtext uses the concept of ISetup-implementations in normal mode and uses
Eclipse’s extension mechanism when it should be configured in an OSGi environment.

16.1. Runtime Setup (ISetup)

For each language there is an implementation of ISetup generated. It implements a
method called createInjectorAndDoEMFRegistration(), which can be called to do the
initialization of the language infrastructure.

Caveat : The ISetup class is intended to be used for runtime and for unit testing, only.
if you use it in a Equinox scenario, you will very likely break the running application
because entries to the global registries will be overwritten.

The setup method returns an Injector, which can further be used to obtain a parser,
etc. It also registers the Resource.Factory and generated EPackages to the respective
global registries provided by EMF. So basically after having run the setup and you can
start using EMF API to load and store models of your language.

16.2. Setup within Eclipse-Equinox (OSGi)

Within Eclipse we have a generated Activator, which creates a Guice Injector using the
modules (§15.2.1). In addition an IExecutableExtensionFactory is generated for each
language, which is used to create IExecutableExtensions. This means that everything
which is created via extension points is managed by Guice as well, i.e. you can declare
dependencies and get them injected upon creation.

The only thing you have to do in order to use this factory is to prefix the class with
the factory MyDslExecutableExtensionFactory name followed by a colon.

<extension point="org.eclipse.ui.editors">
<editor
class="<MyDsl>ExecutableExtensionFactory: org.eclipse.xtext.ui.editor.XtextEditor"
contributorClass=
"org.eclipse.ui.editors.text.TextEditorActionContributor"

default="true"

159

extensions="mydsl"
id="org.eclipse.xtext.example.MyDsl"
name="MyDsl Editor">

</editor>
</extension>

16.3. Logging

Xtext uses Apache’s log4j for logging. It is configured using files named log4j.properties,
which are looked up in the root of the Java class path. If you want to change or
provide configuration at runtime (i.e. non-OSGi), all you have to do is putting such a
log4j.properties in place and make sure that it is not overridden by other log4j.properties
in previous class path entries.

In OSGi you provide configuration by creating a fragment for org.apache.log4j. In
this case you need to make sure that there is not any second fragment contributing a
log4j.properties file.

16.4. Code Generation / Compilation

Once you have a language you probably want to do something with it. There are two
options, you can either write an interpreter that inspects the AST and does something
based on that or you translate your language to another programming language or con-
figuration files.

In this section we’re going to show how to implement a code generator for an Xtext-
based language.

16.4.1. IGenerator

If you go with the default MWE workflow for your language and you haven’t used Xbase,
than you’ll be provided with a callback stub that implements IGenerator. It has one
method that is called from the builder infrastructure whenever a DSL file has changed
or should be translated otherwise. The two parameters passed in to this method are:

• The resource to be processed

• An instance of IFileSystemAccess

The IFileSystemAccess API abstracts over the different file systems the code generator
my run over. These are typically Eclipse’s file system, when the code generator is
triggered from within the incremental build infrastructure in Eclipse, and java.io.File
when the code generator is executed outside Eclipse, say in a headless build.

A very simple implementation of a code generator for the example statemachine lan-
guage (§14.1) introduced earlier could be the following:

160

class StatemachineGenerator implements IGenerator {

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
fsa.generateFile("relative/path/AllTheStates.txt", ’’’
?FOR state : resource.allContents.filter(State).toIterable?
State ?state.name?

?ENDFOR?
’’’)

}
}

We use Xtend for implementing code generators as it is much better suited for that
task then Java (or any other language on the planet :-)). Please refer to the Xtend
documentation on xtend-lang.org for further details. For Java developers it’s extremely
easy to learn, as the basics are similar and you only need to learn the additional powerful
concepts.

16.4.2. Output Configurations

You don’t want to deal with platform or even installation dependent paths in your code
generator, rather you want to be able to configure the code generator with some basic
outlet roots where the different generated files should be placed under. This is what
output configurations are made for.

By default every language will have a single outlet, that points to <project-root>/src-
gen/. The files that go here are treated as fully derived and will be erased by the
compiler automatically when a new file should be generated. If you need additional
outlets or want to have a different default configuration, you need to implement the
interface IOutputConfigurationProvider. It’s straight forward to understand and the
default implementation gives you a good idea about how to implement it.

With this implementation you lay out the basic defaults which can be changed by
users on a workspace or per project level using the preferences.

16.5. Validation

Static analysis or validation is one of the most interesting aspects when developing a pro-
gramming language. The users of your languages will be grateful if they get informative
feedback as they type. In Xtext there are basically three different kinds of validation.

16.5.1. Automatic Validation

Some implementation aspects (e.g. the grammar, scoping) of a language have an impact
on what is required for a document or semantic model to be valid. Xtext automatically
takes care of this.

161

http://www.xtend-lang.org

Lexer/Parser: Syntactical Validation

The syntactical correctness of any textual input is validated automatically by the parser.
The error messages are generated by the underlying parser technology. One can use the
ISyntaxErrorMessageProvider-API to customize this messages. Any syntax errors can
be retrieved from the Resource using the common EMF API:

• Resource.getErrors()

• Resource.getWarnings()

Linker: Cross-link Validation

Any broken cross-links can be checked generically. As cross-link resolution is done lazily
(see linking (§16.6)), any broken links are resolved lazily as well. If you want to validate
whether all links are valid, you will have to navigate through the model so that all
installed EMF proxies get resolved. This is done automatically in the editor.

Similar to syntax errors, any unresolvable cross-links will be reported and can be
obtained through:

• Resource.getErrors()

• Resource.getWarnings()

Serializer: Concrete Syntax Validation

The IConcreteSyntaxValidator validates all constraints that are implied by a grammar.
Meeting these constraints for a model is mandatory to be serialized.

Example:

MyRule:
({MySubRule} "sub")? (strVal+=ID intVal+=INT)*;

This implies several constraints:

1. Types: only instances of MyRule and MySubRule are allowed for this rule. Sub-
types are prohibited, since the parser never instantiates unknown subtypes.

2. Features: In case the MyRule and MySubRule have EStructuralFeatures besides
strVal and intVal, only strVal and intVal may have non-transient values (§16.9.6).

3. Quantities: The following condition must be true: strVal.size() == intVal.size().

4. Values: It must be possible to convert all values (§16.8) to valid tokens for terminal
rule STRING. The same is true for intVal and INT.

162

The typical use case for the concrete syntax validator is validation in non-Xtext-editors
that, however, use an XtextResource. This is, for example, the case when combining
GMF and Xtext. Another use case is when the semantic model is modified ”manually”
(not by the parser) and then serialized again. Since it is very difficult for the serializer to
provide meaningful error messages (§16.9.3), the concrete syntax validator is executed
by default before serialization. A textual Xtext editor itself is not a valid use case. Here,
the parser ensures that all syntactical constraints are met. Therefore, there is no value
in additionally running the concrete syntax validator.

There are some limitations to the concrete syntax validator which result from the fact
that it treats the grammar as declarative, which is something the parser doesn’t always
do.

• Grammar rules containing assigned actions (e.g. {MyType.myFeature=current}
are ignored. Unassigned actions (e.g. {MyType}), however, are supported.

• Grammar rules that delegate to one or more rules containing assigned actions via
unassigned rule calls are ignored.

• Orders within list-features can not be validated. e.g. Rule: (foo+=R1 foo+=R2)*
implies that foo is expected to contain instances of R1 and R2 in an alternating
order.

To use concrete syntax validation you can let Guice inject an instance of IConcreteSyntaxValidator
and use it directly. Furthermore, there is an adapter which allows to use the concrete

syntax validator as an EValidator. You can, for example, enable it in your runtime
module, by adding:

@SingletonBinding(eager = true)
public Class<? extends ConcreteSyntaxEValidator>

bindConcreteSyntaxEValidator() {
return ConcreteSyntaxEValidator.class;

}

To customize error messages please see IConcreteSyntaxDiagnosticProvider and sub-
class ConcreteSyntaxDiagnosticProvider.

16.5.2. Custom Validation

In addition to the afore mentioned kinds of validation, which are more or less done
automatically, you can specify additional constraints specific for your Ecore model. We
leverage existing EMF API and have put some convenience stuff on top. Basically all
you need to do is to make sure that an EValidator is registered for your EPackage.
The EValidator.Registry can only be filled programmatically. That means contrary to
the EPackage.Registry and the Resource.Factory.Registry there is no Equinox extension
point to populate the validator registry.

163

For Xtext we provide a generator fragment (§15.1.2) for the convenient Java-based
EValidator API. Just add the following fragment to your generator configuration and
you are good to go:

fragment =
org.eclipse.xtext.generator.validation.JavaValidatorFragment {}

The generator will provide you with two Java classes. An abstract class generated
to src-gen/ which extends the library class AbstractDeclarativeValidator. This one just
registers the EPackages for which this validator introduces constraints. The other class
is a subclass of that abstract class and is generated to the src/ folder in order to be
edited by you. That is where you put the constraints in.

The purpose of the AbstractDeclarativeValidator is to allow you to write constraints
in a declarative way - as the class name already suggests. That is instead of writing ex-
haustive if-else constructs or extending the generated EMF switch you just have to add
the Check annotation to any method and it will be invoked automatically when valida-
tion takes place. Moreover you can state for what type the respective constraint method
is, just by declaring a typed parameter. This also lets you avoid any type casts. In addi-
tion to the reflective invocation of validation methods the AbstractDeclarativeValidator
provides a couple of convenient assertions.

All in all this is very similar to how JUnit 4 works. Here is an example:

public class DomainmodelJavaValidator
extends AbstractDomainmodelJavaValidator {

@Check
public void checkTypeNameStartsWithCapital(Type type) {
if (!Character.isUpperCase(type.getName().charAt(0)))
warning("Name should start with a capital",
DomainmodelPackage.TYPE__NAME);

}
}

You can also implement quick fixes for individual validation errors and warnings. See
the chapter on quick fixes (§17.3) for details.

16.5.3. Validating Manually

As noted above, Xtext uses EMF’s EValidator API to register validators. You can run
the validators on your model programmatically using EMF’s Diagnostician, e.g.

EObject myModel = myResource.getContents().get(0);

164

Diagnostic diagnostic = Diagnostician.INSTANCE.validate(myModel);
switch (diagnostic.getSeverity()) {
case Diagnostic.ERROR:
System.err.println("Model has errors: ",diagnostic);
break;

case Diagnostic.WARNING:
System.err.println("Model has warnings: ",diagnostic);

}

16.5.4. Test Validators

If you have implemented your validators by extending AbstractDeclarativeValidator,
there are helper classes which assist you when testing your validators.

Testing validators typically works as follows:

1. The test creates some models which intentionally violate some constraints.

2. The test runs some chosen @Check-methods from the validator.

3. The test asserts whether the @Check-methods have raised the expected warnings
and errors.

To create models, you can either use EMF’s ResourceSet to load models from your
hard disk or you can utilize the MyDslFactory that EMF generates for each EPackage, to
construct the tested model elements manually. While the first option has the advantages
that you can edit your models in your textual concrete syntax, the second option has
the advantage that you can create partial models.

To run the @Check-methods and ensure they raise the intended errors and warnings,
you can utilize ValidatorTester as shown by the following example:

Validator:

public class MyLanguageValidator extends AbstractDeclarativeValidator {
@Check
public void checkFooElement(FooElement element) {
if(element.getBarAttribute().contains("foo"))
error("Only Foos allowed", element,
MyLanguagePackage.FOO_ELEMENT__BAR_ATTRIBUTE, 101);

}
}

JUnit-Test:

public class MyLanguageValidatorTest extends AbstractXtextTests {

165

private ValidatorTester<MyLanguageValidator> tester;

@Override
public void setUp() {
with(MyLanguageStandaloneSetup.class);
MyLanguageValidator validator = get(MyLanguageValidator.class);
tester = new ValidatorTester<TestingValidator>(validator);

}

public void testError() {
FooElement model = MyLanguageFactory.eINSTANCE.createFooElement()
model.setBarAttribute("barbarbarbarfoo");

tester.validator().checkFooElement(model);
tester.diagnose().assertError(101);

}

public void testError2() {
FooElement model = MyLanguageFactory.eINSTANCE.createFooElement()
model.setBarAttribute("barbarbarbarfoo");

tester.validate(model).assertError(101);
}

}

This example uses JUnit 3, but since the involved classes from Xtext have no depen-
dency on JUnit whatsoever, JUnit 4 and other testing frameworks will work as well.
JUnit runs the setUp()-method before each test case and thereby helps to create some
common state. In this example, the validator is instantiated by means of Google Guice.
As we inherit from the AbstractXtextTests there are a plenty of useful methods available
and the state of the global EMF singletons will be restored in the method tearDown().
Afterwards, the ValidatorTester is created and parameterized with the actual validator.
It acts as a wrapper for the validator, ensures that the validator has a valid state and
provides convenient access to the validator itself (tester.validator()) as well as to the util-
ity classes which assert diagnostics created by the validator (tester.diagnose()). Please
be aware that you have to call validator() before you can call diagnose(). However, you
can call validator() multiple times in a row.

While validator() allows to call the validator’s @Check-methods directly, validate(model)
leaves it to the framework to call the applicable @Check-methods. However, to avoid
side-effects between tests, it is recommended to call the @Check-methods directly.

diagnose() and validate(model) return an object of type AssertableDiagnostics which
provides several assert-methods to verify whether the expected diagnostics are present:

• assertError(int code): There must be one diagnostic with severity ERROR and
the supplied error code.

166

• assertErrorContains(String messageFragment): There must be one diagnostic with
severity ERROR and its message must contain messageFragment.

• assertError(int code, String messageFragment): Verifies severity, error code and
messageFragment.

• assertWarning(...): This method is available for the same combination of parame-
ters as assertError().

• assertOK(): Expects that no diagnostics (errors, warnings etc.) have been raised.

• assertDiagnostics(int severity, int code, String messageFragment): Verifies severity,
error code and messageFragment.

• assertAll(DiagnosticPredicate... predicates): Allows to describe multiple diag-
nostics at the same time and verifies that all of them are present. Class
AssertableDiagnostics contains static error() and warning() methods which help
to create the needed AssertableDiagnostics.DiagnosticPredicate. Example: asser-
tAll(error(123), warning(”some part of the message”)).

• assertAny(DiagnosticPredicate predicate): Asserts that a diagnostic exists which
matches the predicate.

16.6. Linking

The linking feature allows for specification of cross-references within an Xtext grammar.
The following things are needed for the linking:

1. declaration of a cross-link in the grammar (at least in the Ecore model)

2. specification of linking semantics (usually provided via the scoping API (§16.7))

16.6.1. Declaration of Cross-links

In the grammar a cross-reference is specified using square brackets.

CrossReference :
’[’ type=ReferencedEClass (’|’ terminal=CrossReferenceTerminal)? ’]’

;

Example:

ReferringType :
’ref’ referencedObject=[Entity|STRING]

;

167

The Ecore model inference (§14.3) would create an EClass ReferringType with an
EReference referencedObject of type Entity with its containment property set to false.
The referenced object would be identified either by a STRING and the surrounding
information in the current context (see scoping (§16.7)). If you do not use generate
but import an existing Ecore model, the class ReferringType (or one of its super types)
would need to have an EReference of type Entity (or one of its super types) declared.
Also the EReference’s containment and container properties needs to be set to false.

16.6.2. Default Runtime Behavior (Lazy Linking)

Xtext uses lazy linking by default and we encourage users to stick to this because it
provides many advantages. One of which is improved performance in all scenarios where
you don’t have to load the whole closure of all transitively referenced resources. Fur-
thermore it automatically solves situations where one link relies on other links. Though
cyclic linking dependencies are not supported by Xtext at all.

When parsing a given input string, say
ref Entity01
the LazyLinker first creates an EMF proxy and assigns it to the corresponding EReference

. In EMF a proxy is described by a URI, which points to the real EObject. In the case
of lazy linking the stored URI comprises of the context information given at parse time,
which is the EObject containing the cross-reference, the actual EReference, the index (in
case it’s a multi-valued cross-reference) and the string which represented the cross-link
in the concrete syntax. The latter usually corresponds to the name of the referenced
EObject. In EMF a URI consists of information about the resource the EObject is
contained in as well as a so called fragment part, which is used to find the EObject
within that resource. When an EMF proxy is resolved, the current ResourceSet is

asked. The resource set uses the first part to obtain (i.e. load if it is not already
loaded) the resource. Then the resource is asked to return the EObject based on the
fragment in the URI. The actual cross-reference resolution is done by LazyLinkingRe-
source.getEObject(String) which receives the fragment and delegates to the implementa-
tion of the ILinkingService. The default implementation in turn delegates to the scoping
API (§16.7).

A simple implementation of the linking service is shipped with Xtext and used for any
grammar per default. Usually any necessary customization of the linking behavior can
best be described using the scoping API (§16.7).

16.7. Scoping

Using the scoping API one defines which elements are referable by a certain reference. For
instance, using the introductory example (Fowler’s state machine language) a transition
contains two cross-references: One to a declared event and one to a declared state.

Example:

events

168

nothingImportant MYEV
end

state idle
nothingImportant => idle

end

The grammar rule for transitions looks like this:

Transition :
event=[Event] ’=>’ state=[State];

The grammar states that for the reference event only instances of the type Event are
allowed and that for the EReference state only instances of type State can be referenced.
However, this simple declaration doesn’t say anything about where to find the states or
events. That is the duty of scopes.

An IScopeProvider is responsible for providing an IScope for a given context EObject
and EReference. The returned IScope should contain all target candidates for the given
object and cross-reference.

public interface IScopeProvider {

/**
* Returns a scope for the given context. The scope
* provides access to the compatible visible EObjects
* for a given reference.
*
* @param context the element from which an element shall be
* referenced
* @param reference the reference to be used to filter the
* elements.
* @return {@link IScope} representing the inner most
* {@link IScope} for the passed context and reference.
* Note for implementors: The result may not be
* <code>null</code>. Return
* <code>IScope.NULLSCOPE</code> instead.
*/
IScope getScope(EObject context, EReference reference);

}

169

A single IScope represents an element of a linked list of scopes. That means that a
scope can be nested within an outer scope. Each scope works like a symbol table or a
map where the keys are strings and the values are so called IEObjectDescription, which
is effectively an abstract description of a real EObject.

16.7.1. Global Scopes and Resource Descriptions

In the state machine example we don’t have references across model files. Neither is
there a concept like a namespace which would make scoping a bit more complicated.
Basically, every State and every Event declared in the same resource is visible by their
name. However, in the real world things are most likely not that simple: What if you
want to reuse certain declared states and events across different state machines and you
want to share those as library between different users? You would want to introduce
some kind of cross resource reference.

Defining what is visible from outside the current resource is the responsibility of
global scopes. As the name suggests, global scopes are provided by instances of the
IGlobalScopeProvider. The data structures used to store its elements are described in
the next section.

Resource and EObject Descriptions

In order to make states and events of one file referable from another file you need to
export them as part of a so called IResourceDescription.

A IResourceDescription contains information about the resource itself which primarily
its URI, a list of exported EObjects in the form of IEObjectDescriptions as well as
information about outgoing cross-references and qualified names it references. The cross
references contain only resolved references, while the list of imported qualified names
also contain those names, which couldn’t be resolved. This information is leveraged
by Xtext’s indexing infrastructure in order to compute the transitive hull of dependent
resources.

For users and especially in the context of scoping the most important information is
the list of exported EObjects. An IEObjectDescription stores the URI of the actual
EObject, its QualifiedName, as well as its EClass. In addition one can export arbitrary
information using the user data map. The following diagram gives an overview on the
description classes and their relationships.

A language is configured with a default implementation of IResourceDescription.
Manager which computes the list of exported IEObjectDescriptions by iterating the
whole EMF model and applying the getQualifiedName(EObject obj) from IQualifiedNameProvider
on each EObject. If the object has a qualified name an IEObjectDescription is created

and exported (i.e. added to the list). If an EObject doesn’t have a qualified name, the
element is considered to be not referable from outside the resource and consequently
not indexed. If you don’t like this behavior, you can implement and bind your own
implementation of IResourceDescription.Manager.

There are also two different default implementations of IQualifiedNameProvider. Both
work by looking up an EAttribute ’name’. The SimpleNameProvider simply returns the

170

Figure 16.1.: The data model of Xtext’s index

plain value, while the DefaultDeclarativeQualifiedNameProvider concatenates the simple
name with the qualified name of its parent exported EObject. This effectively simulates
the qualified name computation of most namespace-based languages (like e.g. Java).

As mentioned above, in order to calculate an IResourceDescription for a resource the
framework asks the IResourceDescription.Manager. To convert between a QualifiedName
and its String representation you can use the IQualifiedNameConverter. Here is some
Java code showing how to do that:

@Inject IQualifiedNameConverter converter;

Manager manager = // obtain an instance of IResourceDescription.Manager
IResourceDescription description =
manager.getResourceDescription(resource);

for (IEObjectDescription eod : description.getExportedObjects()) {
System.out.println(converter.toString(eod.getQualifiedName()));

}

In order to obtain an IResourceDescription.Manager it is best to ask the correspond-
ing IResourceServiceProvider. That is because each language might have a totally dif-

171

ferent implementation and as you might refer from your language to a different lan-
guage you cannot reuse your language’s IResourceDescription.Manager. One basically
asks the IResourceServiceProvider.Registry (there is usually one global instance) for
an IResourceServiceProvider, which in turn provides an IResourceDescription.Manager
along other useful services.

If you are running in a Guice enabled scenario, the code looks like this:

@Inject
private IResourceServiceProvider.Registry rspr;

private IResourceDescription.Manager getManager(Resource res) {
IResourceServiceProvider resourceServiceProvider =
rspr.getResourceServiceProvider(res.getURI());

return resourceServiceProvider.getResourceDescriptionManager();
}

If you don’t run in a Guice enabled context you will likely have to directly access the
singleton:

private IResourceServiceProvider.Registry rspr =
IResourceServiceProvider.Registry.INSTANCE;

However, we strongly encourage you to use dependency injection. Now, that we know
how to export elements to be referable from other resources, we need to learn how those
exported IEObjectDescriptions can be made available to the referencing resources. That
is the responsibility of global scoping which is described in the following chapter.

Global Scopes Based On Explicit Imports (ImportURI Mechanism)

A simple and straight forward solution is to have explicit references to other resources in
your file by explicitly listing paths or URIs to all referenced resources in your model file.
That is for instance what most include mechanisms use. In Xtext we provide a handy
implementation of an IGlobalScopeProvider which is based on a naming convention and
makes this semantics very easy to use. Talking of the introductory example and given
you would want to add support for referencing external States and Events from within
your state machine, all you had to do is add something like the following to the grammar
definition:

Statemachine :
(imports+=Import)* // allow imports
’events’

172

(events+=Event)+
’end’
(’resetEvents’
(resetEvents+=[Event])+

’end’)?
’commands’
(commands+=Command)+

’end’
(states+=State)+;

Import :
’import’ importURI=STRING; // feature must be named importURI

This effectively allows import statements to be declared before the events section. In
addition you will have to make sure that you have bound the ImportUriGlobalScopeProvider
for the type IGlobalScopeProvider by the means of Guice (§15.2). That implementa-

tion looks up any EAttributes named ’importURI’ in your model and interprets their
values as URIs that point to imported resources. That is it adds the corresponding
resources to the current resource’s resource set. In addition the scope provider uses the
IResourceDescription.Manager of that imported resource to compute all the IEObject-
Descriptions returned by the IScope.

Global scopes based on import URIs are available if you use the ImportURIScopingFragment
in the workflow of your language. It will bind an ImportUriGlobalScopeProvider that

handles importURI features.

Global Scopes Based On External Configuration (e.g. Class Path Based)

Instead of explicitly referring to imported resources, the other possibility is to have some
kind of external configuration in order to define what is visible from outside a resource.
Java for instances uses the notion of the class path to define containers (jars and class
folders) which contain any referenceable elements. In the case of Java also the order of
such entries is important.

Since version 1.0.0 Xtext provides support for this kind of global scoping. To enable it,
a DefaultGlobalScopeProvider has to be bound to the IGlobalScopeProvider interface.

By default Xtext leverages the class path mechanism since it is well designed and
already understood by most of our users. The available tooling provided by JDT and
PDE to configure the class path adds even more value. However, it is just a default:
You can reuse the infrastructure without using Java and independent from the JDT.

In order to know what is available in the ”world” a global scope provider which relies
on external configuration needs to read that configuration in and be able to find all
candidates for a certain EReference. If you don’t want to force users to have a folder and
file name structure reflecting the actual qualified names of the referenceable EObjects,
you’ll have to load all resources up front and either keep holding them in memory or

173

remembering all information which is needed for the resolution of cross-references. In
Xtext that information is provided by a so called IEObjectDescription.

About the Index, Containers and Their Manager

Xtext ships with an index which remembers all IResourceDescription and their IEObjectDescription
objects. In the IDE-context (i.e. when running the editor, etc.) the index is updated by

an incremental project builder. As opposed to that, in a non-UI context you typically do
not have to deal with changes such that the infrastructure can be much simpler. In both
situations the global index state is held by an implementation of IResourceDescriptions
(Note the plural form!). The bound singleton in the UI scenario is even aware of unsaved
editor changes, such that all linking happens to the latest maybe unsaved version of the
resources. You will find the Guice configuration of the global index in the UI scenario
in SharedModule.

The index is basically a flat list of instances of IResourceDescription. The index itself
doesn’t know about visibility constraints due to class path restriction. Rather than that,
they are defined by the referencing language by means of so called IContainers: While
Java might load a resource via ClassLoader.loadResource() (i.e. using the class path
mechanism), another language could load the same resource using the file system paths.

Consequently, the information which container a resource belongs to depends on the
referencing context. Therefore an IResourceServiceProvider provides another interest-
ing service, which is called IContainer.Manager. For a given IResourceDescription, the
IContainer.Manager provides you with the IContainer as well as with a list of all ICon-
tainers which are visible from there. Note that the index is globally shared between all
languages while the IContainer.Manager which adds the semantics of containers, can be
very different depending on the language. The following method lists all resources visible
from a given Resource:

@Inject
IContainer.Manager manager;

public void listVisibleResources(
Resource myResource, IResourceDescriptions index) {

IResourceDescription descr =
index.getResourceDescription(myResource.getURI());

for(IContainer visibleContainer:
manager.getVisibleContainers(descr, index)) {

for(IResourceDescription visibleResourceDesc:
visibleContainer.getResourceDescriptions()) {

System.out.println(visibleResourceDesc.getURI());
}

}
}

174

Xtext ships two implementations of IContainer.Manager which are as usual bound with
Guice: The default binding is to SimpleResourceDescriptionsBasedContainerManager,
which assumes all IResourceDescription to be in a single common container. If you don’t
care about container support, you’ll be fine with this one. Alternatively, you can bind
StateBasedContainerManager and an additional IAllContainersState which keeps track
of the set of available containers and their visibility relationships.

Xtext offers a couple of strategies for managing containers: If you’re running an Eclipse
workbench, you can define containers based on Java projects and their class paths or
based on plain Eclipse projects. Outside Eclipse, you can provide a set of file sys-
tem paths to be scanned for models. All of these only differ in the bound instance of
IAllContainersState of the referring language. These will be described in detail in the
following sections.

Figure 16.2.: IContainer Management

175

JDT-Based Container Manager

As JDT is an Eclipse feature, this JDT-based container management is only available
in the UI scenario. It assumes so called IPackageFragmentRoots as containers. An
IPackageFragmentRoot in JDT is the root of a tree of Java model elements. It usually
refers to

• a source folder of a Java project,

• a referenced jar,

• a class path entry of a referenced Java project, or

• the exported packages of a required PDE plug-in.

So for an element to be referable, its resource must be on the class path of the caller’s
Java project and it must be exported (as described above).

As this strategy allows to reuse a lot of nice Java things like jars, OSGi, maven, etc.
it is part of the default: You should not have to reconfigure anything to make it work.
Nevertheless, if you messed something up, make sure you bind

public Class<? extends IContainer.Manager> bindIContainer$Manager() {
return StateBasedContainerManager.class;

}

in the runtime module and

public Provider<IAllContainersState> provideIAllContainersState() {
return org.eclipse.xtext.ui.shared.Access.getJavaProjectsState();

}

in the UI module of the referencing language. The latter looks a bit more difficult
than a common binding, as we have to bind a global singleton to a Guice provider. A
StrictJavaProjectsState requires all elements to be on the class path, while the default
JavaProjectsState also allows models in non-source folders.

Eclipse Project-Based Containers

If the class path based mechanism doesn’t work for your case, Xtext offers an alternative
container manager based on plain Eclipse projects: Each project acts as a container and
the project references Properties->Project References are the visible containers.

In this case, your runtime module should define

176

public Class<? extends IContainer.Manager> bindIContainer$Manager() {
return StateBasedContainerManager.class;

}

and the UI module should bind

public Provider<IAllContainersState> provideIAllContainersState() {
return org.eclipse.xtext.ui.shared.Access.getWorkspaceProjectsState();

}

ResourceSet-Based Containers

If you need an IContainer.Manager that is independent of Eclipse projects, you can use
the ResourceSetBasedAllContainersState. This one can be configured with a mapping
of container handles to resource URIs.

It is unlikely you want to use this strategy directly in your own code, but it is used in
the back-end of the MWE2 workflow component Reader. This is responsible for reading
in models in a workflow, e.g. for later code generation. The Reader allows to either scan
the whole class path or a set of paths for all models therein. When paths are given, each
path entry becomes an IContainer of its own. In the following snippet,

component = org.eclipse.xtext.mwe.Reader {
// lookup all resources on the class path
// useJavaClassPath = true

// or define search scope explicitly
path = "src/models"
path = "src/further-models"

...
}

16.7.2. Local Scoping

We now know how the outer world of referenceable elements can be defined in Xtext.
Nevertheless, not everything is available in any context and with a global name. Rather
than that, each context can usually have a different scope. As already stated, scopes can
be nested, i.e. a scope can in addition to its own elements contain elements of a parent

177

scope. When parent and child scope contain different elements with the same name, the
parent scope’s element will usually be shadowed by the element from the child scope.

To illustrate that, let’s have a look at Java: Java defines multiple kinds of scopes
(object scope, type scope, etc.). For Java one would create the scope hierarchy as
commented in the following example:

// file contents scope
import static my.Constants.STATIC;

public class ScopeExample { // class body scope
private Object field = STATIC;

private void method(String param) { // method body scope
String localVar = "bar";
innerBlock: { // block scope
String innerScopeVar = "foo";
Object field = innerScopeVar;
// the scope hierarchy at this point would look like this:
// blockScope{field,innerScopeVar}->
// methodScope{localVar, param}->
// classScope{field}-> (’field’ is shadowed)
// fileScope{STATIC}->
// classpathScope{
// ’all qualified names of accessible static fields’} ->
// NULLSCOPE{}
//

}
field.add(localVar);

}
}

In fact the class path scope should also reflect the order of class path entries. For
instance:

classpathScope{stuff from bin/}
-> classpathScope{stuff from foo.jar/}
-> ...
-> classpathScope{stuff from JRE System Library}
-> NULLSCOPE{}

Please find the motivation behind this and some additional details in this blog post .

178

http://blog.efftinge.de/2009/01/xtext-scopes-and-emf-index.html

Declarative Scoping

If you have to define scopes for certain contexts, the base class AbstractDeclarativeScopeProvider
allows to do that in a declarative way. It looks up methods which have either of the

following two signatures:

IScope scope_<RefDeclaringEClass>_<Reference>(
<ContextType> ctx, EReference ref)

IScope scope_<TypeToReturn>(<ContextType> ctx, EReference ref)

The former is used when evaluating the scope for a specific cross-reference and here
ContextReference corresponds to the name of this reference (prefixed with the name
of the reference’s declaring type and separated by an underscore). The ref parameter
represents this cross-reference.

The latter method signature is used when computing the scope for a given element
type and is applicable to all cross-references of that type. Here TypeToReturn is the
name of that type.

So if you for example have a state machine with a Transition object owned by its
source State and you want to compute all reachable states (i.e. potential target states),
the corresponding method could be declared as follows (assuming the cross-reference is
declared by the Transition type and is called target):

IScope scope Transition target(Transition this, EReference ref)
If such a method does not exist, the implementation will try to find one for the context

object’s container. Thus in the example this would match a method with the same name
but State as the type of the first parameter. It will keep on walking the containment
hierarchy until a matching method is found. This container delegation allows to reuse
the same scope definition for elements in different places of the containment hierarchy.
Also it may make the method easier to implement as the elements comprising the scope
are quite often owned or referenced by a container of the context object. In the example
the State objects could for instance be owned by a containing StateMachine object.

If no method specific to the cross-reference in question was found for any of the
objects in the containment hierarchy, the implementation will start looking for methods
matching the other signature. Again it will first attempt to match the context object.
Thus in the example the signature first matched would be:

IScope scope State(Transition this, EReference ref)
If no such method exists, the implementation will again try to find a method matching

the context object’s container objects. In the case of the state machine example you
might want to declare the scope with available states at the state machine level:

IScope scope State(StateMachine this, EReference ref)
This scope can now be used for any cross-references of type State for context objects

owned by the state machine.

179

16.7.3. Imported Namespace-Aware Scoping

The imported namespace aware scoping is based on qualified names and namespaces. It
adds namespace support to your language, which is comparable and similar to the one
in Scala and C#. Scala and C# both allow to have multiple nested packages within one
file and you can put imports per namespace, so that imported names are only visible
within that namespace. See the domain model example: its scope provider extends
ImportedNamespaceAwareLocalScopeProvider.

IQualifiedNameProvider

The ImportedNamespaceAwareLocalScopeProvider makes use of the so called IQualifiedNameProvider
service. It computes QualifiedNames for EObjects. A qualified name consists of several

segments
The default implementation uses a simple name look up composes the qualified name

of the simple names of all containers and the object itself.
It also allows to override the name computation declaratively. The following snippet

shows how you could make Transitions in the state machine example referable by giving
them a name. Don’t forget to bind your implementation in your runtime module.

FowlerDslQualifiedNameProvider
extends DefaultDeclarativeQualifiedNameProvider {

public QualifiedName qualifiedName(Transition t) {
if(t.getEvent() == null ||?!(t.eContainer() instanceof State))
return null;

else
return QualifiedName.create((State)t.eContainer()).getName(),
t.getEvent().getName());

}
}

Importing Namespaces

The ImportedNamespaceAwareLocalScopeProvider looks up EAttributes with name ’im-
portedNamespace’ and interprets them as import statements. By default qualified names
with or without a wildcard at the end are supported. For an import of a qualified name
the simple name is made available as we know from e.g. Java, where

import java.util.Set;
makes it possible to refer to java.util.Set by its simple name Set. Contrary to Java

the import is not active for the whole file but only for the namespace it is declared in
and its child namespaces. That is why you can write the following in the example DSL:

package foo {

180

import bar.Foo
entity Bar extends Foo {
}

}

package bar {
entity Foo {}

}

Of course the declared elements within a package are as well referable by their simple
name:

package bar {
entity Bar extends Foo {}
entity Foo {}

}

The following would as well be ok:

package bar {
entity Bar extends bar.Foo {}
entity Foo {}

}

See the JavaDocs and this blog post for details.

16.8. Value Converter

Value converters are registered to convert the parsed text into a data type instance and
vice versa. The primary hook is the IValueConverterService and the concrete implemen-
tation can be registered via the runtime Guice module (§15.2.1). Simply override the
corresponding binding in your runtime module like shown in this example:

@Override
public Class<? extends IValueConverterService>

bindIValueConverterService() {
return MySpecialValueConverterService.class;

}

181

http://blogs.itemis.de/stundzig/archives/773

The most simple way to register additional value converters is to make use of AbstractDeclarativeValueConverterService
, which allows to declaratively register an IValueConverter by means of an annotated
method.

@ValueConverter(rule = "MyRuleName")
public IValueConverter<MyDataType> getMyRuleNameConverter() {
return new MyValueConverterImplementation();

}

If you use the common terminals grammar org.eclipse.xtext.common.Terminals you
should extend the DefaultTerminalConverters and override or add value converters by
adding the respective methods. In addition to the explicitly defined converters in the
default implementation, a delegating converter is registered for each available EDataType
. The delegating converter reuses the functionality of the corresponding EMF EFactory.

Many languages introduce a concept for qualified names, i.e. names composed of
namespaces separated by a delimiter. Since this is such a common use case, Xtext pro-
vides an extensible converter implementation for qualified names. The QualifiedNameValueConverter
handles comments and white space gracefully and is capable to use the appropriate value
converter for each segment of a qualified name. This allows for individually quoted seg-
ments. The domainmodel example shows how to use it.

The protocol of an IValueConverter allows to throw a ValueConverterException if
something went wrong. The exception is propagated as a syntax error by the parser or as
a validation problem by the ConcreteSyntaxValidator if the value cannot be converted to
a valid string. The AbstractLexerBasedConverter is useful when implementing a custom
value converter. If the converter needs to know about the rule that it currently works
with, it may implement the interface IValueConverter.RuleSpecific. The framework will
set the rule such as the implementation may use it afterwards.

16.9. Serialization

Serialization is the process of transforming an EMF model into its textual representation.
Thereby, serialization complements parsing and lexing.

In Xtext, the process of serialization is split into the following steps:

1. Validating the semantic model. This is optional, enabled by default, done by
the concrete syntax validator (§16.5.1) and can be turned off in the save op-
tions (§16.9.4).

2. Matching the model elements with the grammar rules and creating a stream of
tokens. This is done by the parse tree constructor (§16.9.3).

3. Associating comments with semantic objects. This is done by the comment asso-
ciator (§16.9.5).

182

4. Associating existing nodes from the node model with tokens from the token stream.

5. Merging existing white space (§16.9.9) and line-wraps into the token stream.

6. Adding further needed white space or replacing all white space using a format-
ter (§16.10).

Serialization is invoked when calling XtextResource.save(..). Furthermore, the Serializer
provides resource-independent support for serialization. Another situation that triggers

serialization is applying quick fixes (§17.3) with semantic modifications. Serialization is
not called when a textual editors contents is saved to disk.

16.9.1. The Contract

The contract of serialization says that a model which is saved (serialized) to its textual
representation and then loaded (parsed) again yields a new model that is equal to the
original model. Please be aware that this does not imply, that loading a textual rep-
resentation and serializing it back produces identical textual representations. However,
the serialization algorithm tries to restore as much information as possible. That is,
if the parsed model was not modified in-memory, the serialized output will usually be
equal to the previous input. Unfortunately, this cannot be ensured for each and every
case. A use case where is is hardly possible, is shown in the following example:

MyRule:
(xval+=ID | yval+=INT)*;

The given MyRule reads ID- and INT -elements which may occur in an arbitrary order
in the textual representation. However, when serializing the model all ID-elements will
be written first and then all INT -elements. If the order is important it can be preserved
by storing all elements in the same list - which may require wrapping the ID- and
INT -elements into other objects.

16.9.2. Roles of the Semantic Model and the Node Model During
Serialization

A serialized document represents the state of the semantic model. However, if there is
a node model available (i.e. the semantic model has been created by the parser), the
serializer

• preserves existing white spaces (§16.9.9) from the node model.

• preserves existing comments (§16.9.5) from the node model.

• preserves the representation of cross-references: If a cross-referenced object can be
identified by multiple names (i.e. scoping returns multiple IEObjectDescriptions
for the same object), the serializer tries to keep the name that was used in the
input file.

183

• preserves the representation of values: For values handled by the value con-
verter (§16.8), the serializer checks whether the textual representation converted
to a value equals the value from the semantic model. If that is true, the textual
representation is kept.

16.9.3. Parse Tree Constructor

The parse tree constructor usually does not need to be customized since it is automati-
cally derived from the Xtext Grammar (§14). However, it can be helpful to look into it
to understand its error messages and its runtime performance.

For serialization to succeed, the parse tree constructor must be able to consume every
non-transient element of the to-be-serialized EMF model. To consume means, in this
context, to write the element to the textual representation of the model. This can turn
out to be a not-so-easy-to-fulfill requirement, since a grammar usually introduces implicit
constraints to the EMF model as explained for the concrete syntax validator (§16.5.1).

If a model can not be serialized, an XtextSerializationException is thrown. Possible
reasons are listed below:

• A model element can not be consumed. This can have the following reasons/solu-
tions:

– The model element should not be stored in the model.

– The grammar needs an assignment which would consume the model element.

– The transient value service (§16.9.6) can be used to indicate that this model
element should not be consumed.

• An assignment in the grammar has no corresponding model element. The default
transient value service considers a model element to be transient if it is unset or
equals its default value. However, the parse tree constructor may serialize default
values if this is required by a grammar constraint to be able to serialize another
model element. The following solution may help to solve such a scenario:

– A model element should be added to the model.

– The assignment in the grammar should be made optional.

• The type of the model element differs from the type in the grammar. The type of
the model element must be identical to the return type of the grammar rule or the
action’s type. Subtypes are not allowed.

• Value conversion (§16.8) fails. The value converter can indicate that a value is not
serializable by throwing a ValueConverterException.

• An enum literal is not allowed at this position. This can happen if the referenced
enum rule only lists a subset of the literals of the actual enumeration.

184

To understand error messages and performance issues of the parse tree constructor it
is important to know that it implements a backtracking algorithm. This basically means
that the grammar is used to specify the structure of a tree in which one path (from
the root node to a leaf node) is a valid serialization of a specific model. The parse tree
constructor’s task is to find this path - with the condition, that all model elements are
consumed while walking this path. The parse tree constructor’s strategy is to take the
most promising branch first (the one that would consume the most model elements). If
the branch leads to a dead end (for example, if a model element needs to be consumed
that is not present in the model), the parse tree constructor goes back the path until a
different branch can be taken. This behavior has two consequences:

• In case of an error, the parse tree constructor has found only dead ends but no leaf.
It cannot tell which dead end is actually erroneous. Therefore, the error message
lists dead ends of the longest paths, a fragment of their serialization and the reason
why the path could not be continued at this point. The developer has to judge on
his own which reason is the actual error.

• For reasons of performance, it is critical that the parse tree constructor takes the
most promising branch first and detects wrong branches early. One way to achieve
this is to avoid having many rules which return the same type and which are called
from within the same alternative in the grammar.

16.9.4. Options

SaveOptions can be passed to XtextResource.save(options) and to Serializer.serialize(..).
Available options are:

• Formatting. Default: false. If enabled, it is the formatters (§16.10) job to determine
all white space information during serialization. If disabled, the formatter only
defines white space information for the places in which no white space information
can be preserved from the node model. E.g. When new model elements are inserted
or there is no node model.

• Validating. Default: true: Run the concrete syntax validator (§16.5.1) before
serializing the model.

16.9.5. Preserving Comments from the Node Model

The ICommentAssociater associates comments with semantic objects. This is important
in case an element in the semantic model is moved to a different position and the model
is serialized, one expects the comments to be moved to the new position in the document
as well.

Which comment belongs to which semantic object is surely a very subjective issue.
The default implementation behaves as follows, but can be customized:

• If there is a semantic token before a comment and in the same line, the comment
is associated with this token’s semantic object.

185

• In all other cases, the comment is associated with the semantic object of the next
following object.

16.9.6. Transient Values

Transient values are values or model elements which are not persisted (written to the
textual representation in the serialization phase). If a model contains model elements
which can not be serialized with the current grammar, it is critical to mark them transient
using the ITransientValueService, or serialization will fail. The default implementation
marks all model elements transient, which are eStructuralFeature.isTransient() or not
eObject.eIsSet(eStructuralFeature). By default, EMF returns false for eIsSet(..) if the
value equals the default value.

16.9.7. Unassigned Text

If there are calls of data type rules or terminal rules that do not reside in an assignment,
the serializer by default doesn’t know which value to use for serialization.

Example:

PluralRule:
’contents:’ count=INT Plural;

terminal Plural:
’item’ | ’items’;

Valid models for this example are contents 1 item or contents 5 items. However, it is
not stored in the semantic model whether the keyword item or items has been parsed.
This is due to the fact that the rule call Plural is unassigned. However, the parse tree con-
structor (§16.9.3) needs to decide which value to write during serialization. This decision
can be be made by customizing the IValueSerializer.serializeUnassignedValue(EObject,
RuleCall, INode).

16.9.8. Cross-Reference Serializer

The cross-reference serializer specifies which values are to be written to the textual
representation for cross-references. This behavior can be customized by implementing
ITokenSerializer . ICrossReferenceSerializer . The default implementation delegates to
various other services such as the IScopeProvider or the LinkingHelper each of which
may be the better place for customization.

16.9.9. Merge White Space

After the parse tree constructor (§16.9.3) has done its job to create a stream of to-
kens which are to be written to the textual representation, and the comment associa-
tor (§16.9.5) has done its work, existing white space form the node model is merged into
the stream.

186

The strategy is as follows: If two tokens follow each other in the stream and the
corresponding nodes in the node model follow each other as well, then the white space
information in between is kept. In all other cases it is up to the formatter (§16.10) to
calculate new white space information.

16.9.10. Token Stream

The parse tree constructor (§16.9.3) and the formatter (§16.10) use an ITokenStream
for their output, and the latter for its input as well. This allows for chaining the two
components. Token streams can be converted to a String using the TokenStringBuffer
and to a Writer using the WriterTokenStream.

public interface ITokenStream {

void flush() throws IOException;
void writeHidden(EObject grammarElement, String value);
void writeSemantic(EObject grammarElement, String value);

}

16.10. Formatting (Pretty Printing)

A formatter can be implemented via the IFormatter service. Technically speaking, a
formatter is a Token Stream (§16.9.10) which inserts/removes/modifies hidden tokens
(white space, line-breaks, comments).

The formatter is invoked during the serialization phase (§16.9) and when the user
triggers formatting in the editor (for example, using the CTRL+SHIFT+F shortcut).

Xtext ships with two formatters:

• The OneWhitespaceFormatter simply writes one white space between all tokens.

• The AbstractDeclarativeFormatter allows advanced configuration using a
FormattingConfig. Both are explained below.

A declarative formatter can be implemented by subclassing AbstractDeclarativeFormatter
, as shown in the following example:

public class ExampleFormatter extends AbstractDeclarativeFormatter {

@Override
protected void configureFormatting(FormattingConfig c) {
ExampleLanguageGrammarAccess f = getGrammarAccess();

c.setAutoLinewrap(120);

187

// find common keywords an specify formatting for them
for (Pair<Keyword, Keyword> pair : f.findKeywordPairs("(", ")")) {
c.setNoSpace().after(pair.getFirst());
c.setNoSpace().before(pair.getSecond());

}
for (Keyword comma : f.findKeywords(",")) {
c.setNoSpace().before(comma);

}

// formatting for grammar rule Line
c.setLinewrap(2).after(f.getLineAccess().getSemicolonKeyword_1());
c.setNoSpace().before(f.getLineAccess().getSemicolonKeyword_1());

// formatting for grammar rule TestIndentation
c.setIndentationIncrement().after(

f.getTestIndentationAccess().getLeftCurlyBracketKeyword_1());
c.setIndentationDecrement().before(

f.getTestIndentationAccess().getRightCurlyBracketKeyword_3());
c.setLinewrap().after(

f.getTestIndentationAccess().getLeftCurlyBracketKeyword_1());
c.setLinewrap().after(

f.getTestIndentationAccess().getRightCurlyBracketKeyword_3());

// formatting for grammar rule Param
c.setNoLinewrap().around(f.getParamAccess().getColonKeyword_1());
c.setNoSpace().around(f.getParamAccess().getColonKeyword_1());

// formatting for Comments
cfg.setLinewrap(0, 1, 2).before(g.getSL_COMMENTRule());
cfg.setLinewrap(0, 1, 2).before(g.getML_COMMENTRule());
cfg.setLinewrap(0, 1, 1).after(g.getML_COMMENTRule());

}
}

The formatter has to implement the method configureFormatting(...) which declara-
tively sets up a FormattingConfig.

The FormattingConfig consist of general settings and a set of formatting instructions:

16.10.1. General FormattingConfig Settings

setAutoLinewrap(int) defines the amount of characters after which a line-break should
be dynamically inserted between two tokens. The instructions setNoLinewrap().???(),
setNoSpace().???() and setSpace(space).???() suppress this behavior locally. The default
is 80.

188

16.10.2. FormattingConfig Instructions

Per default, the declarative formatter inserts one white space between two tokens. In-
structions can be used to specify a different behavior. They consist of two parts: When
to apply the instruction and what to do.

To understand when an instruction is applied think of a stream of tokens whereas
each token is associated with the corresponding grammar element. The instructions are
matched against these grammar elements. The following matching criteria exist:

• after(element): The instruction is applied after the grammar element has been
matched. For example, if your grammar uses the keyword ”;” to end lines, this can
instruct the formatter to insert a line break after the semicolon.

• before(element): The instruction is executed before the matched element. For ex-
ample, if your grammar contains lists which separate their values with the keyword
”,”, you can instruct the formatter to suppress the white space before the comma.

• around(element): This is the same as before(element) combined with af-
ter(element).

• between(left, right): This matches if left directly follows right in the document.
There may be no other tokens in between left and right.

• bounds(left, right): This is the same as after(left) combined with before(right).

• range(start, end): The rule is enabled when start is matched, and disabled when
end is matched. Thereby, the rule is active for the complete region which is sur-
rounded by start and end.

The term tokens is used slightly different here compared to the parser/lexer. Here, a
token is a keyword or the string that is matched by a terminal rule, data type rule or
cross-reference. In the terminology of the lexer a data type rule can match a composition
of multiple tokens.

The parameter element can be a grammar’s AbstractElement or a grammar’s AbstractRule
. All grammar rules and almost all abstract elements can be matched. This includes
rule calls, parser rules, groups and alternatives. The semantic of before(element), af-
ter(element), etc. for rule calls and parser rules is identical to when the parser would
”pass” this part of the grammar. The stack of called rules is taken into account. The
following abstract elements can not have assigned formatting instructions:

• Actions. E.g. {MyAction} or {MyAction.myFeature=current}.

• Grammar elements nested in data type rules. This is due to to the fact that tokens
matched by a data type rule are treated as atomic by the serializer. To format
these tokens, please implement a ValueConverter (§16.8).

• Grammar elements nested in CrossReference.

After having explained how rules can be activated, this is what they can do:

189

• setIndentationIncrement() increments indentation by one unit at this posi-
tion. Whether one unit consists of one tab-character or spaces is defined
by IIndentationInformation. The default implementation consults Eclipse’s
IPreferenceStore.

• setIndentationDecrement() decrements indentation by one unit.

• setLinewrap(): Inserts a line-wrap at this position.

• setLinewrap(int count): Inserts count numbers of line-wrap at this position.

• setLinewrap(int min, int def, int max): If the amount of line-wraps that have been
at this position before formatting can be determined (i.e. when a node model is
present), then the amount of of line-wraps is adjusted to be within the interval min,
max and is then reused. In all other cases def line-wraps are inserted. Example:
setLinewrap(0, 0, 1) will preserve existing line-wraps, but won’t allow more than
one line-wrap between two tokens.

• setNoLinewrap(): Suppresses automatic line wrap, which may occur when the
line’s length exceeds the defined limit.

• setSpace(String space): Inserts the string space at this position. If you use this to
insert something else than white space, tabs or newlines, a small puppy will die
somewhere in this world.

• setNoSpace(): Suppresses the white space between tokens at this position. Be
aware that between some tokens a white space is required to maintain a valid
concrete syntax.

16.10.3. Grammar Element Finders

Sometimes, if a grammar contains many similar elements for which the same formatting
instructions ought to apply, it can be tedious to specify them for each grammar element
individually. The IGrammarAccess provides convenience methods for this. The find
methods are available for the grammar and for each parser rule.

• findKeywords(String... keywords) returns all keywords that equal one of the pa-
rameters.

• findKeywordPairs(String leftKw, String rightKw): returns tuples of keywords from
the same grammar rule. Pairs are matched nested and sequentially. Example: for
Rule: ’(’ name=ID (’(’ foo=ID ’)’) ’)’ | ’(’ bar=ID ’)’ findKeywordPairs(”(”, ”)”)
returns three pairs.

16.11. Fragment Provider (Referencing Xtext Models From
Other EMF Artifacts)

Although inter-Xtext linking is not done by URIs, you may want to be able to reference
your EObject from non-Xtext models. In those cases URIs are used, which are made

190

up of a part identifying the resource and a second part that points to an object. Each
EObject contained in a resource can be identified by a so called fragment.

A fragment is a part of an EMF URI and needs to be unique per resource.
The generic resource shipped with EMF provides a generic path-like computation of

fragments. These fragment paths are unique by default and do not have to be serialized.
On the other hand, they can be easily broken by reordering the elements in a resource.

With an XMI or other binary-like serialization it is also common and possible to use
UUIDs. UUIDs are usually binary and technical, so you don’t want to deal with them
in human readable representations.

However with a textual concrete syntax we want to be able to compute fragments out
of the human readable information. We don’t want to force people to use UUIDs (i.e.
synthetic identifiers) or fragile, relative, generic paths in order to refer to EObjects.

Therefore one can contribute an IFragmentProvider per language. It has two methods:
getFragment(EObject, Fallback) to calculate the fragment of an EObject and getEOb-
ject(Resource, String, Fallback) to go the opposite direction. The IFragmentProvider
.Fallback interface allows to delegate to the default strategy - which usually uses the
fragment paths described above.

The following snippet shows how to use qualified names as fragments:

public QualifiedNameFragmentProvider implements IFragmentProvider {

@Inject
private IQualifiedNameProvider qualifiedNameProvider;

public String getFragment(EObject obj, Fallback fallback) {
String qName = qualifiedNameProvider.getQualifiedName(obj);
return qName != null ? qName : fallback.getFragment(obj);

}

public EObject getEObject(Resource resource,
String fragment,
Fallback fallback) {

if (fragment != null) {
Iterator<EObject> i = EcoreUtil.getAllContents(resource, false);
while(i.hasNext()) {
EObject eObject = i.next();
String candidateFragment = (eObject.eIsProxy())

? ((InternalEObject) eObject).eProxyURI().fragment()
: getFragment(eObject, fallback);

if (fragment.equals(candidateFragment))
return eObject;

}
}
return fallback.getEObject(fragment);

}
}

191

For performance reasons it is usually a good idea to navigate the resource based on
the fragment information instead of traversing it completely. If you know that your
fragment is computed from qualified names and your model contains something like
NamedElements, you should split your fragment into those parts and query the root
elements, the children of the best match and so on.

Furthermore it’s a good idea to have some kind of conflict resolution strategy to be able
to distinguish between equally named elements that actually are different, e.g. properties
may have the very same qualified name as entities.

16.12. Encoding in Xtext

Encoding, aka character set, describes the way characters are encoded into bytes and
vice versa. Famous standard encodings are UTF-8 or ISO-8859-1. The list of available
encodings can be determined by calling Charset.availableCharsets(). There is also a list
of encodings and their canonical Java names in the API docs.

Unfortunately, each platform and/or spoken language tends to define its own native
encoding, e.g. Cp1258 on Windows in Vietnamese or MacIceland on Mac OS X in
Icelandic.

In an Eclipse workspace, files, folders, projects can have individual encodings, which
are stored in the hidden file .settings/org.eclipse.core.resources.prefs in each project. If a
resource does not have an explicit encoding, it inherits the one from its parent recursively.
Eclipse chooses the native platform encoding as the default for the workspace root.
You can change the default workspace encoding in the Eclipse preferences Preferences-
>Workspace->Default text encoding. If you develop on different platforms, you should
consider choosing an explicit common encoding for your text or code files, especially if
you use special characters.

While Eclipse allows to define and inspect the encoding of a file, your file system
usually doesn’t. Given an arbitrary text file there is no general strategy to tell how it
was encoded. If you deploy an Eclipse project as a jar (even a plug-in), any encoding
information not stored in the file itself is lost, too. Some languages define the encoding
of a file explicitly, as in the first processing instruction of an XML file. Most languages
don’t. Others imply a fixed encoding or offer enhanced syntax for character literals, e.g.
the unicode escape sequences \uXXXX in Java.

As Xtext is about textual modeling, it allows to tweak the encoding in various places.

16.12.1. Encoding at Language Design Time

The plug-ins created by the New Xtext Project wizard are by default encoded in the
workspace’s standard encoding. The same holds for all files that Xtext generates in
there. If you want to change that, e.g. because your grammar uses/allows special
characters, you should manually set the encoding in the properties of these projects
after their creation. Do this before adding special characters to your grammar or at

192

http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html

least make sure the grammar reads correctly after the encoding change. To tell the
Xtext generator to generate files in the same encoding, set the encoding property in the
workflow next to your grammar, e.g.

Generator {
encoding ="UTF-8"
...

16.12.2. Encoding at Language Runtime

As each language could handle the encoding problem differently, Xtext offers a service
here. The IEncodingProvider has a single method getEncoding(URI) to define the en-
coding of the resource with the given URI. Users can implement their own strategy but
keep in mind that this is not intended to be a long running method. If the encoding is
stored within the model file itself, it should be extractable in an easy way, like from the
first line in an XML file. The default implementation returns the default Java character
set in the runtime scenario.

In the UI scenario, when there is a workspace, users will expect the encoding of
the model files to be settable the same way as for other files in the workspace. The
default implementation of the IEncodingProvider in the UI scenario therefore returns
the file’s workspace encoding for files in the workspace and delegates to the runtime
implementation for all other resources, e.g. models in a jar or from a deployed plug-in.
Keep in mind that you are going to loose the workspace encoding information as soon
as you leave this workspace, e.g. deploy your project.

Unless you want to enforce a uniform encoding for all models of your language, we
advise to override the runtime service only. It is bound in the runtime module using the
binding annotation @Runtime:

@Override
public void configureRuntimeEncodingProvider(Binder binder) {

binder.bind(IEncodingProvider.class)
.annotatedWith(DispatchingProvider.Runtime.class)
.to(MyEncodingProvider.class);

}

For the uniform encoding, bind the plain IEncodingProvider to the same implemen-
tation in both modules:

@Override
public Class<? extends IEncodingProvider> bindIEncodingProvider() {

193

return MyEncodingProvider.class;
}

16.12.3. Encoding of an XtextResource

An XtextResource uses the IEncodingProvider of your language by default. You can
override that by passing an option on load and save, e.g.

Map<?,?> options = new HashMap();
options.put(XtextResource.OPTION_ENCODING, "UTF-8");
myXtextResource.load(options);

options.put(XtextResource.OPTION_ENCODING, "ISO-8859-1");
myXtextResource.save(options);

16.12.4. Encoding in New Model Projects

The SimpleProjectWizardFragment generates a wizard that clients of your language can
use to create model projects. This wizard expects its templates to be in the encoding of
the Generator that created it (see above). As for every new project wizard, its output will
be encoded in the default encoding of the target workspace. If your language enforces a
special encoding that ignores the workspace settings, you’ll have to make sure that your
wizard uses the right encoding by yourself.

16.12.5. Encoding of Xtext Source Code

The source code of the Xtext framework itself is completely encoded in ISO 8859-1, which
is necessary to make the Xpand templates work everywhere (they use french quotation
markup). That encoding is hard coded into the Xtext generator code. You are likely
never going to change that.

16.13. Unit Testing the Language

Automated tests are crucial for the maintainability and the quality of a software product.
That is why it is strongly recommended to write unit tests for your language, too. The
Xtext project wizard creates a test project for that purpose. It simplifies the setup
procedure both for the Eclipse agnostic tests and the UI tests for Junit4.

The following is about testing the parser and the linker for the Domainmodel language
from the tutorial. It leverages Xtend to write the test case.

194

16.13.1. Creating a simple test class

First of all, a new Xtend class has to be created. Therefore, choose the src folder of the
test plugin, and select New -> Xtend Class from the context menu. Provide a meaningful
name and enter the package before you hit finish.

The core of the test infrastructure is the XtextRunner and the language specific
IInjectorProvider. Both have to be provided by means of class annotations:

import org.eclipse.xtext.junit4.XtextRunner
import org.example.domainmodel.DomainmodelInjectorProvider

@InjectWith(DomainmodelInjectorProvider)
@RunWith(XtextRunner)
class ParserTest {
}

This configuration will make sure that you can use dependency injection in your test
class, and that the global EMF registries are properly populated and cleaned up before
respectively after each test.

16.13.2. Writing a parser test

The class org.eclipse.xtext.junit4.util.ParseHelper allows to parse an arbitrary string into
an AST model. The AST model itself can be traversed and checked afterwards. A static
import of Assert leads to concise and readable test cases.

import org.eclipse.xtext.junit4.util.ParseHelper
import static org.junit.Assert.*

...
@Inject
ParseHelper<Domainmodel> parser

@Test
def void parseDomainmodel() {
val model = parser.parse(’’’
entity MyEntity {
parent: MyEntity

}
’’’)
val entity = model.elements.head as Entity
assertSame(entity, entity.features.head.type)

}

195

16.13.3. How to write tests that includes multiple different languages

If in addition to the main language your tests require using other languages for references
from/to your main language, you’ll have to parse and load dependant resources into the
same ResourceSet first for cross reference resolution to work.

As your main language’s default generated IInjectorProvider (e.g. DomainmodelIn-
jectorProvider) does not know about any other such dependant languages, they must
be initialized explicitly. The recommended pattern for this is to create a new subclass
of the generated MyLanguageInjectorProvider in your *.test project and make sure the
dependenant language is intizialized properly. You can and then use this new injector
provider instead of the original one in your test’s @InjectWith:

class MyLanguageWithDependenciesInjectorProvider extends MyLanguageInjectorProvider {
override internalCreateInjector() {
MyOtherLangLanguageStandaloneSetup.doSetup
return super.internalCreateInjector

}
}

@RunWith(XtextRunner)
@InjectWith(MyLanguageWithDependenciesInjectorProvider)
class YourTest {
...

}

You should not put injector creation for referenced languages in your standalone setup.
Note that for the headless code generation use case, the Maven plug-in is configured with
multiple setups, so usually there is no problem there.

You may also need to initialize ’import’-ed ecore models that are not generated
by your Xtext language. This should be done by using an explicit MyModelPack-
age.eINSTANCE.getName(); in the doSetup() method of your respective language’s
StandaloneSetup class. Note that it is strongly recommended to follow this pattern
instead of just using @Before methods in your *Test class, as due to internal technical
reasons that won’t work anymore as soon as you have more than just one @Test.

class MyLanguageStandaloneSetup extends MyLanguageStandaloneSetupGenerated {

def static void doSetup() {
MyPackageImpl.init
new MyLanguageStandaloneSetup().createInjectorAndDoEMFRegistration

}

}

196

This only applies to referencing dependencies to ’import’-ed Ecore models and lan-
guages based on them which may be used in the test. The inherited dependencies from
mixed-in grammars are automatically listed in the generated super class already, and
nothing needs to be done for those.

197

17. IDE Concepts

For the following part we will refer to the state machine example (§14.1) to describe the
different aspects of Xtext’s UI features.

17.1. Label Provider

There are various places in the UI in which model elements have to be presented to the
user: In the outline view (§17.5), in hyperlinks (§17.6), in content proposals (§17.2),
find dialogs etc. Xtext allows to customize each of these appearances by individual
implementation of the ILabelProvider interface.

An ILabelProvider has two methods: getText(Object) returns the text in an object’s
label, while getImage(Object) returns the icon. In addition, the Eclipse UI frame-
work offers the DelegatingStyledCellLabelProvider.IStyledLabelProvider, which returns
a StyledString (i.e. with custom fonts, colors etc.) in the getStyledText(Object) method.

Almost all label providers in the Xtext framework inherit from the base class AbstractLabelProvider
which unifies both approaches. Subclasses can either return a styled string or a string

in the doGetText(Object) method. The framework will automatically convert it to a
styled text (with default styles) or to a plain text in the respective methods.

Dealing with images can be cumbersome, too, as image handles tend to be scarce sys-
tem resources. The AbstractLabelProvider helps you managing the images: In your im-
plementation of doGetImage(Object) you can as well return an Image, an ImageDescriptor
or a string, representing a path in the icons/ folder of the containing plug-in. This path

is actually configurable by Google Guice. Have a look at the PluginImageHelper to learn
about the customizing possibilities.

If you have the LabelProviderFragment in the list of generator fragments in the MWE2
workflow for your language, it will automatically create stubs and bindings for an {My-
Lang}EObjectLabelProvider (§17.1.1) and an {MyLang}DescriptionLabelProvider (§17.1.2)
which you can implement manually.

17.1.1. Label Providers For EObjects

The EObject label provider refers to actually loaded and thereby available model ele-
ments. By default, Xtext binds the DefaultEObjectLabelProvider to all use cases, but
you can change the binding individually for the Outline, Content Assist or other places.
For that purpose, there is a so called binding annotation for each use case. For example,
to use a custom MyContentAssistLabelProvider to display elements in the content assist,
you have to override configureContentProposalLabelProvider(..) in your language’s UI
module:

198

@Override
public void configureContentProposalLabelProvider(Binder binder) {
binder.bind(ILabelProvider.class)
.annotatedWith(ContentProposalLabelProvider.class)
.to(MyContentAssistLabelProvider.class);

}

If your grammar uses an imported EPackage, there may be an existing edit-plug-in
generated by EMF that also provides label providers for model elements. To use this as
a fallback, your label provider should call the constructor with the delegate parameter
and use dependency injection for its initialization, e.g.

public class MyLabelProvider {
@Inject
public MyLabelProvider(AdapterFactoryLabelProvider delegate) {
super(delegate);

}
}

DefaultEObjectLabelProvider

The default implementation of the ILabelProvider interface utilizes the polymorphic dis-
patcher idiom to implement an external visitor as the requirements of the label provider
are kind of a best match for this pattern. It boils down to the fact that the only thing you
need to do is to implement a method that matches a specific signature. It either provides
a image filename or the text to be used to represent your model element. Have a look at
following example to get a more detailed idea about the DefaultEObjectLabelProvider.

public class SecretCompartmentsLabelProvider
extends DefaultLabelProvider {

public String text(Event event) {
return event.getName() + " (" + event.getCode() + ")";

}

public String image(Event event) {
return "event.gif";

}

public String image(State state) {
return "state.gif";

199

}
}

What is especially nice about the default implementation is the actual reason for its
class name: It provides very reasonable defaults. To compute the label for a certain
model element, it will at first have a look for an EAttribute name and try to use this
one. If it cannot find such a feature, it will try to use the first feature, that can be used
best as a label. At worst it will return the class name of the model element, which is
kind of unlikely to happen.

You can a also customize error handling by overriding the methods handleTextError()
or handleImageError().

17.1.2. Label Providers For Index Entries

Xtext maintains an index of all model elements to allow quick searching and linking
without loading the referenced resource (see the chapter on index-based scopes (§16.7.1)
for details). The elements from this index also appear in some UI contexts, e.g. in the
Find model elements dialog or in the Find references view. For reasons of scalability,
the UI should not automatically load resources, so we need another implementation of a
label provider that works with the elements from the index, i.e. IResourceDescription,
IEObjectDescription, and IReferenceDescription.

The default implementation of this service is the DefaultDescriptionLabelProvider.
It employs the same polymorphic dispatch mechanism as the DefaultEObjectLabel-
Provider (§17.1.1). The default text of an IEObjectDescription is its indexed name.
The image is resolved by dispatching to image(EClass) with the EClass of the de-
scribed object. This is likely the only method you want to override. Instances of
IResourceDescription will be represented with their path and the icon registered for
your language’s editor.

To have a custom description label provider, make sure it is bound in your UI module:

public void configureResourceUIServiceLabelProvider(Binder binder) {
binder.bind(ILabelProvider.class)
.annotatedWith(ResourceServiceDescriptionLabelProvider.class)
.to(MyCustomDefaultDescriptionLabelProvider.class);

}

17.2. Content Assist

The Xtext generator, amongst other things, generates the following two content assist
related artifacts:

• An abstract proposal provider class named Abstract{MyLang}ProposalProvider
generated into the src-gen folder within the ui project, and

200

• a concrete subclass in the src-folder of the ui project called {My-
Lang}ProposalProvider

First we will investigate the generated Abstract{MyLang}ProposalProvider with meth-
ods that look like this:

public void complete{TypeName}_{FeatureName}(
EObject model, Assignment assignment,
ContentAssistContext context, ICompletionProposalAcceptor acceptor) {
// clients may override

}

public void complete_{RuleName}(
EObject model, RuleCall ruleCall,
ContentAssistContext context, ICompletionProposalAcceptor acceptor) {
// clients may override

}

The snippet above indicates that the generated class contains a complete* -method
for each assigned feature in the grammar and for each rule. The braces in the snippet
are place-holders that should give a clue about the naming scheme used to create the
various entry points for implementors. The generated proposal provider falls back to
some default behavior for cross-references and keywords. Furthermore it inherits the
logic that was introduced in grammars that were mixed into the current language.

Clients who want to customize the behavior may override the methods from the
AbstractJavaBasedContentProposalProvider or introduce new methods with a special-
ized first parameter. The framework inspects the type of the model object and dispatches
method calls to the most concrete implementation, that can be found.

It is important to know, that for a given offset in a model file, many possible grammar
elements exist. The framework dispatches to the method declarations for any valid
element. That means, that a bunch of complete* methods may be called.

To provide a dummy proposal for the code of an event instance, you may introduce a
specialization of the generated method and implement it as follows. This will propose
ZonkID for an event with the name Zonk.

public void completeEvent_Code(
Event event, Assignment assignment,
ContentAssistContext context, ICompletionProposalAcceptor acceptor) {
// call implementation of superclass
super.completeEvent_Code(model, assignment, context, acceptor);

// compute the plain proposal
String proposal = event.getName() + "ID";

201

// Create and register the completion proposal:
// The proposal may be null as the createCompletionProposal(..)
// methods check for valid prefixes and terminal token conflicts.
// The acceptor handles null-values gracefully.
acceptor.accept(createCompletionProposal(proposal, context));

}

17.3. Quick Fixes

For validations written using the AbstractDeclarativeValidator (§16.5.2) it is possible to
provide corresponding quick fixes in the editor. To be able to implement a quick fix for
a given diagnostic (a warning or error) the underlying cause of the diagnostic must be
known (i.e. what actual problem does the diagnostic represent), otherwise the fix doesn’t
know what needs to be done. As we don’t want to deduce this from the diagnostic’s
error message we associate a problem specific code with the diagnostic.

In the following example taken from the DomainmodelJavaValidator the diagnostic’s
code is given by the third argument to the warning() method and it is a reference to the
static String field INVALID TYPE NAME in the validator class.

warning("Name should start with a capital",
DomainmodelPackage.TYPE__NAME, INVALID_TYPE_NAME, type.getName());

Now that the validation has a unique code identifying the problem we can register
quick fixes for it. We start by adding the QuickfixProviderFragment to our workflow
and after regenerating the code we should find an empty class MyDslQuickfixProvider
in our DSL’s UI project and new entries in the plugin.xml gen file.

Continuing with the INVALID TYPE NAME problem from the domain model exam-
ple we add a method with which the problem can be fixed (have a look at the Domain-
modelQuickfixProvider for details):

@Fix(DomainmodelJavaValidator.INVALID_TYPE_NAME)
public void fixName(final Issue issue,
IssueResolutionAcceptor acceptor) {
acceptor.accept(issue,
"Capitalize name", // quick fix label
"Capitalize name of ’" + issue.getData()[0] + "’",

// description
"upcase.png", // quick fix icon
new IModification() {
public void apply(IModificationContext context)

throws BadLocationException {

202

IXtextDocument xtextDocument = context.getXtextDocument();
String firstLetter = xtextDocument.get(issue.getOffset(), 1);
xtextDocument.replace(issue.getOffset(), 1,

Strings.toFirstUpper(firstLetter));
}

}
);

}

By using the correct signature (see below) and annotating the method with the @Fix
annotation referencing the previously specified issue code from the validator, Xtext

knows that this method implements a fix for the problem. This also allows us to annotate
multiple methods as fixes for the same problem.

The first three parameters given to the IssueResolutionAcceptor define the UI repre-
sentation of the quick fix. As the document is not necessarily loaded when the quick fix
is offered, we need to provide any additional data from the model that we want to refer
to in the UI when creating the issue in the validator above. In this case, we provided
the existing type name. The additional data is available as Issue.getData(). As it is
persisted in markers, only strings are allowed.

The actual model modification is implemented in the IModification. The IModificationContext
provides access to the erroneous document. In this case, we’re using Eclipse’s IDocument
API to replace a text region.

If you prefer to implement the quick fix in terms of the semantic model use a ISemanticModification
instead. Its apply(EObject, IModificationContext) method will be invoked inside a

modify-transaction and the first argument will be the erroneous semantic element. This
makes it very easy for the fix method to modify the model as necessary. After the method
returns the model as well as the Xtext editor’s content will be updated accordingly. If
the method fails (throws an exception) the change will not be committed. The following
snippet shows a semantic quick fix for a similar problem.

@Fix(DomainmodelJavaValidator.INVALID_FEATURE_NAME)
public void fixFeatureName(final Issue issue,

IssueResolutionAcceptor acceptor) {
acceptor.accept(issue,
"Uncapitalize name", // label
"Uncapitalize name of ’" + issue.getData()[0] + "’", // description
"upcase.png", // icon
new ISemanticModification() {
public void apply(EObject element, IModificationContext context) {
((Feature) element).setName(

Strings.toFirstLower(issue.getData()[0]));
}

}
);

203

}

17.3.1. Quick Fixes for Linking Errors and Syntax Errors

You can even define quick fixes for linking errors. The issue codes are assigned by the
ILinkingDiagnosticMessageProvider. Have a look at the domain model example how to
add quick fixes for these errors.

Hence, there is the ISyntaxErrorMessageProvider to assign issue codes to syntactical
errors.

17.4. Template Proposals

Xtext-based editors automatically support code templates. That means that you get the
corresponding preference page where users can add and change template proposals. If
you want to ship a couple of default templates, you have to put a file named templates.xml
inside the templates directory of the generated UI-plug-in. This file contains templates
in a format as described in the Eclipse online help .

By default Xtext registers context types that follow certain patterns. A context type
will be created

204

http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_imp_code_temp.htm

1. for each rule ({languageName}.{RuleName}) and

2. for each keyword ({languageName}.kw {keyword}).

If you don’t like these defaults you’ll have to subclass XtextTemplateContextTypeRegistry
and configure it via Guice (§15.2.1).

In addition to the standard template proposal extension mechanism, Xtext ships with
a predefined set of TemplateVariableResolvers to resolve special variable types in tem-
plates. Besides the standard template variables available in GlobalTemplateVariables
like ${user}, ${date}, ${time}, ${cursor}, etc., these TemplateVariableResolvers sup-
port the automatic resolving of cross references enumeration values. Both resolvers are
explained in the following sections.

It is best practice to edit the templates in the preferences page, export them into the
templates.xml -file and put this one into the templates folder of your UI-plug-in. However,
these templates will not be visible by default. To fix it, you have to manually edit the
xml-file and insert an id attribute for each template element. Note that the attribute
name is case sensitive. As always in eclipse plug-in development, if the folder templates
did not exist before, you have to add it to the bin.includes in your build.properties.

17.4.1. Cross Reference Template Variable Resolver

Xtext comes with a specific template variable resolver called CrossReferenceTemplateVariableResolver
, which can be used to pre-populate placeholders for cross-references within a template.
The respective template variable is called CrossReference and its syntax is as follows:

${<displayText>:CrossReference([<MyPackageName>.]<MyType>.<myRef>)}
Where ”displayText” is the initial value that is shown in the editor. It is also the

identifier for a place holder so that multiple place holders with the same name will be
updated at once by the user using linked editing.

This small example yields the text event => state and allows selecting any events and
states using a drop down:

<template
name="transition"
description="event transition"
id="transition"
context="org.xtext.example.SecretCompartments.Transition"
enabled="true">

${event:CrossReference(’Transition.event’)} =>
${state:CrossReference(’Transition.state’)

</template>

205

17.4.2. Enumeration Template Variable Resolver

The EnumTemplateVariableResolver resolves a template variable to EEnumLiterals which
are assignment-compatible to the enumeration type declared as the first parameter of
the the Enum template variable.

The syntax is as follows:
${<displayText>:Enum([<MyPackage>.]<EnumType>)
For example the following template (taken from another example):

<template
name="Entity"
description="template for an Entity"
id="entity"
context="org.eclipse.xtext.example.Domainmodel.Entity"
enabled="true">

${public:Enum(’Visibility’)} entity ${Name} {
${cursor}

}
</template>

yields the text public entity Name {} where the text public is the default value of
the Visibility. The editor provides a drop down that is populated with the other literal
values as defined in the EEnum.

206

17.5. Outline View

Xtext provides an outline view to help you navigate your models. By default, it provides
a hierarchical view on your model and allows you to sort tree elements alphabetically.
Selecting an element in the outline will highlight the corresponding element in the text
editor. Users can choose to synchronize the outline with the editor selection by clicking
the Link with Editor button.

In its default implementation, the outline view shows the containment hierarchy of
your model. This should be sufficient in most cases. If you want to adjust the structure
of the outline, i.e. by omitting a certain kind of node or by introducing additional nodes,
you can customize the outline by implementing your own IOutlineTreeProvider.

If your workflow defines the OutlineTreeProviderFragment, Xtext generates a stub for
your own IOutlineTreeProvider that allows you to customize every aspect of the outline
by inheriting the powerful customization methods of DefaultOutlineTreeProvider. The
following sections show how to do fill this stub with life.

17.5.1. Influencing the outline structure

Each node the outline tree is an instance of IOutlineNode. The outline tree is always
rooted in a DocumentRootNode. This node is automatically created for you. Its children
are the root nodes in the displayed view.

An EObjectNode represents a model element. By default, Xtext creates an EObjectNode
for each model element in the node of its container. Nodes are created by calling the

method createNode(parentNode, modelElement) which delegates to createEObjectN-
ode(..) if not specified differently.

To change the children of specific nodes, you have to implement the method

_createChildren(parentNode,

207

parentModelElement)

with the appropriate types. The following snippet shows you how to skip the root model
element of type Domainmodel in the outline of our domain model example:

protected void _createChildren(DocumentRootNode parentNode,
Domainmodel domainModel) {

for (AbstractElement element : domainModel.getElements()) {
createNode(parentNode, element);

}
}

You can choose not to create any node in the createChildren() method. Because the
outline nodes are calculated on demand, the UI will show you an expandable node that
doesn’t reveal any children if expanded. This might be confuse your users a bit. To
overcome this shortcoming, you have to implement the method isLeaf(modelElement)
with the appropriate argument type, e.g.

// feature nodes are leafs and not expandable
protected boolean _isLeaf(Feature feature) {
return true;

}

Xtext provides a third type of node: EStructuralFeatureNode. It is used to represent
a feature of a model element rather than element itself. The following simplified snippet
from Xtend2 illustrates how to use it:

protected void _createChildren(DocumentRootNode parentNode,
XtendFile xtendFile) {

// show a node for the attribute XtendFile.package
createEStructuralFeatureNode(parentNode,
xtendFile,
Xtend2Package.Literals.XTEND_FILE__PACKAGE,
getImageForPackage(),
xtendFile.getPackage(),
true);

// show a container node for the list reference XtendFile.imports
// the imports will be shown as individual child nodes automatically
createEStructuralFeatureNode(parentNode,
xtendFile,
Xtend2Package.Literals.XTEND_FILE__IMPORTS,

208

getImageForImportContainer(),
"import declarations",
false);

createEObjectNode(parentNode, xtendFile.getXtendClass());
}

Of course you can add further custom types of nodes. For consistency, make sure to
inherit from AbstractOutlineNode. To instantiate these, you have to implement creat-
eNode(parentNode, semanticElement) with the appropriate parameter types.

17.5.2. Styling the outline

You can also customize the icons and texts for an outline node. By default, Xtext uses
the label provider (§17.1) of your language. If you want the labels to be specific to the
outline, you can override the methods text(modelElement)?and image(modelElement)
in your DefaultOutlineTreeProvider.

Note that the method text(modelElement) can return a String or a StyledString. The
StylerFactory can be used to create StyledStrings, like in the following example:

@Inject
private StylerFactory stylerFactory;

public Object _text(Entity entity) {
if(entity.isAbstract()) {
return new StyledString(entity.getName(),
stylerFactory
.createXtextStyleAdapterStyler(getTypeTextStyle())));

else
return entity.getName();

}

protected TextStyle getTypeTextStyle() {
TextStyle textStyle = new TextStyle();
textStyle.setColor(new RGB(149, 125, 71));
textStyle.setStyle(SWT.ITALIC);
return textStyle;

}

To access images we recommend to use the PluginImageHelper.

17.5.3. Filtering actions

Often, you want to allow users to filter the contents of the outline to make it easier
to concentrate on the relevant aspects of the model. To add filtering capabilities to
your outline, you need to add a filter action to your outline. Filter actions must extend

209

AbstractFilterOutlineContribution to ensure that the action toggle state is handled cor-
rectly. Here is an example form our domain model example:

public class FilterOperationsContribution
extends AbstractFilterOutlineContribution {

public static final String PREFERENCE_KEY =
"ui.outline.filterOperations";

@Inject
private PluginImageHelper imageHelper;

@Override
protected boolean apply(IOutlineNode node) {
return !(node instanceof EObjectNode)

|| !((EObjectNode) node).getEClass()
.equals(DomainmodelPackage.Literals.OPERATION);

}

@Override
public String getPreferenceKey() {
return PREFERENCE_KEY;

}

@Override
protected void configureAction(Action action) {
action.setText("Hide operations");
action.setDescription("Hide operations");
action.setToolTipText("Hide operations");
action.setImageDescriptor(getImageDescriptor());

}

protected ImageDescriptor getImageDescriptor(String imagePath) {
return ImageDescriptor.createFromImage(
imageHelper.getImage("Operation.gif"));

}

}

The contribution must be bound in the MyDslUiModule like this

public void configureFilterOperationsContribution(Binder binder) {
binder
.bind(IOutlineContribution.class).annotatedWith(
Names.named("FilterOperationsContribution"))

210

.to(FilterOperationsContribution.class);
}

17.5.4. Sorting actions

Xtext already adds a sorting action to your outline. By default, nodes are sorted lexically
by their text. You can change this behavior by binding your own OutlineFilterAndSorter
.IComparator.

A very common use case is to group the children by categories first, e.g. show the
imports before the types in a package declaration, and sort the categories separately.
That is why the SortOutlineContribution.DefaultComparator has a method getCate-
gory(IOutlineNode) that allows to specify such categories. The example shows how to
use such categories:

public class MydslOutlineNodeComparator extends DefaultComparator {
@Override
public int getCategory(IOutlineNode node) {
if (node instanceof EObjectNode)
switch((EObjectNode) node).getEClass().getClassifierID())) {
case MydslPackage.TYPE0:
return -10;

case MydslPackage.TYPE1:
return -20;

}
return Integer.MIN_VALUE;

}
}

As always, you have to declare a binding for your custom implementation in your
MyDslUiModule:

@Override
public Class<? extends IComparator>
bindOutlineFilterAndSorter$IComparator() {
return MydslOutlineNodeComparator.class;

}

211

17.5.5. Quick Outline

Xtext also provides a quick outline: If you press CTRL-O in an Xtext editor, the
outline of the model is shown in a popup window. The quick outline also supports
drill-down search with wildcards. To enable the quick outline, you have to put the
QuickOutlineFragment into your workflow.

17.6. Hyperlinking

The Xtext editor provides hyperlinking support for any tokens corresponding to cross-
references in your grammar definition. You can either CTRL-click on any of these tokens
or hit F3 while the cursor position is at the token in question and this will take you to
the referenced model element. As you’d expect this works for references to elements in
the same resource as well as for references to elements in other resources. In the latter
case the referenced resource will first be opened using the corresponding editor.

17.6.1. Location Provider

When navigating a hyperlink, Xtext will also select the text region corresponding to
the referenced model element. Determining this text region is the responsibility of the
ILocationInFileProvider. The default implementation implements a best effort strategy
which can be summarized as:

1. If the model element’s type declares a feature name then return the region of the
corresponding token(s). As a fallback also check for a feature id.

2. If the model element’s node model contains any top-level tokens corresponding to
invocations of the rule ID in the grammar then return a region spanning all those
tokens.

3. As a last resort return the region corresponding to the first keyword token of the
referenced model element.

The location service offers different methods to obtain the region of interest for special
use cases. You can either obtain the complete region for an object or only the identifying
string which is usually the name of the instance (see getSignificantTextRegion(EObject)).
You can also query for the text region of a specific EStructuralFeature by means of
getFullTextRegion(EObject, EStructuralFeature, int).

As the default strategy is a best effort it may not always result in the selection you
want. If that’s the case you can override (§15.2.1) the ILocationInFileProvider binding
in the UI module as in the following example:

public class MyDslUiModule extends AbstractMyDslUiModule {
@Override
public Class<? extends ILocationInFileProvider>

bindILocationInFileProvider() {

212

return MyDslLocationInFileProvider.class;
}

}

Often the default strategy only needs some guidance (e.g. selecting the text corre-
sponding to another feature than name). In that case you can simply subclass the
DefaultLocationInFileProvider and override the methods getIdentifierFeature() or useKey-
word() to guide the first and last steps of the strategy as described above (see XtextLocationInFileProvider
for an example).

17.6.2. Customizing Available Hyperlinks

The hyperlinks are provided by the HyperlinkHelper which will create links for cross-
referenced objects by default. Clients may want to override createHyperlinksByOff-
set(XtextResource, int, IHyperlinkAcceptor) to provide additional links or supersede
the default implementation.

17.7. Syntax Coloring

Besides the already mentioned advanced features like content assist (§17.2) and code
formatting (§16.10) the powerful editor for your DSL is capable to mark up your model-
code to improve the overall readability. It is possible to use different colors and fonts
according to the meaning of the different parts of your input file. One may want to
use some unintrusive colors for large blocks of comments while identifiers, keywords and
strings should be colored differently to make it easier to distinguish between them. This
kind of text decorating markup does not influence the semantics of the various sections
but helps to understand the meaning and to find errors in the source code.

The highlighting is done in two stages. This allows for sophisticated algorithms that
are executed asynchronously to provide advanced coloring while simple pattern matching
may be used to highlight parts of the text instantaneously. The latter is called lexical
highlighting while the first is based on the meaning of your different model elements and
therefore called semantic highlighting.

When you introduce new highlighting styles, the preference page for your DSL is
automatically configured and allows the customization of any registered highlighting
setting. They are automatically persisted and reloaded on startup.

213

17.7.1. Lexical Highlighting

The lexical highlighting can be customized by providing implementations of the interface
IHighlightingConfiguration and the abstract class AbstractTokenScanner. The latter
fulfills the interface ITokenScanner from the underlying JFace Framework, which may
be implemented by clients directly.

The IHighlightingConfiguration is used to register any default style without a specific
binding to a pattern in the model file. It is used to populate the preferences page and
to initialize the ITextAttributeProvider, which in turn is the component that is used to
obtain the actual settings for a style’s id. An implementation will usually be very similar
to the DefaultHighlightingConfiguration and read like this:

public class DefaultHighlightingConfiguration
implements IHighlightingConfiguration {

public static final String KEYWORD_ID = "keyword";
public static final String COMMENT_ID = "comment";

public void configure(IHighlightingConfigurationAcceptor acceptor) {
acceptor.acceptDefaultHighlighting(
KEYWORD_ID, "Keyword", keywordTextStyle());

acceptor.acceptDefaultHighlighting(COMMENT_ID, "Comment", // ...
}

public TextStyle keywordTextStyle() {
TextStyle textStyle = new TextStyle();

214

textStyle.setColor(new RGB(127, 0, 85));
textStyle.setStyle(SWT.BOLD);
return textStyle;

}
}

Implementations of the ITokenScanner are responsible for splitting the content of a
document into various parts, the so called tokens, and return the highlighting information
for each identified range. It is critical that this is done very fast because this component
is used on each keystroke. Xtext ships with a default implementation that is based on
the lexer that is generated by ANTLR which is very lightweight and fast. This default
implementation can be customized by clients easily. They simply have to bind another
implementation of the AbstractAntlrTokenToAttributeIdMapper. To get an idea about
it, have a look at the DefaultAntlrTokenToAttributeIdMapper.

17.7.2. Semantic Highlighting

The semantic highlighting stage is executed asynchronously in the background and can
be used to calculate highlighting states based on the meaning of the different model
elements. Users of the editor will notice a very short delay after they have edited the text
until the styles are actually applied to the document. This keeps the editor responsive
while providing aid when reading and writing your model.

As for the lexical highlighting the interface to register the available styles is the
IHighlightingConfiguration. The ISemanticHighlightingCalculator is the primary hook
to implement the logic that will compute to-be-highlighted ranges based on the model
elements.

The framework will pass the current XtextResource and an IHighlightedPositionAcceptor
to the calculator. It is ensured, that the resource will not be altered externally until the

called method provideHighlightingFor() returns. However, the resource may be null in
case of errors in the model. The implementor’s task is to navigate the semantic model
and compute various ranges based on the attached node information and associate styles
with them. This may read similar to the following snippet:

public void provideHighlightingFor(XtextResource resource,
IHighlightedPositionAcceptor acceptor) {

if (resource == null || resource.getParseResult() == null)
return;

INode root = resource.getParseResult().getRootNode();
for (INode node : root.getAsTreeIterable()) {
if (node.getGrammarElement() instanceof CrossReference) {
acceptor.addPosition(node.getOffset(), node.getLength(),
MyHighlightingConfiguration.CROSS_REF);

}
}

215

}

This example refers to an implementation of the IHighlightingConfiguration that reg-
isters an own style for each cross-reference. It is pretty much the same implementation
as for the previously mentioned sample of a lexical IHighlightingConfiguration.

public class HighlightingConfiguration
implements IHighlightingConfiguration {

// lexical stuff goes here
// ..
public final static String CROSS_REF = "CrossReference";

public void configure(IHighlightingConfigurationAcceptor acceptor) {
// lexical stuff goes here
// ..
acceptor.acceptDefaultHighlighting(CROSS_REF,
"Cross-References", crossReferenceTextStyle());

}

public TextStyle crossReferenceTextStyle() {
TextStyle textStyle = new TextStyle();
textStyle.setStyle(SWT.ITALIC);
return textStyle;

}
}

The implementor of an ISemanticHighlightingCalculator should be aware of perfor-
mance to ensure a good user experience. It is probably not a good idea to traverse
everything of your model when you will only register a few highlighted ranges that can
be found easier with some typed method calls. It is strongly advised to use purposeful
ways to navigate your model. The parts of Xtext’s core that are responsible for the
semantic highlighting are pretty optimized in this regard as well. The framework will
only update the ranges that actually have been altered, for example. This speeds up the
redraw process. It will even move, shrink or enlarge previously announced regions based
on a best guess before the next semantic highlighting pass has been triggered after the
user has changed the document.

17.8. Rename Refactoring

Xtext provides rename refactoring of the elements in your language. That includes

• a command, handlers and keybindings on both declarations and references,

216

• in-place linked editing for the new name,

• validation and preview,

• renaming of declaration and all references even across language boundaries.

To enable refactoring support make sure the RefactorElementNameFragment is en-
abled in the fragment section of the MWE workflow of your language, e.g.

// rename refactoring
fragment = refactoring.RefactorElementNameFragment {}

The fragment has an additional flag useJdtRefactoring which can be used to delegate
to JDT’s refactoring infrastructure for languages using Xbase (§18) and an inferred JVM
model (§18.4) (i.e. the domain model example or Xtend).

If you have stuck to the defaults with regard to naming, cross-referencing, and indexing
rename refactoring should not need any customization. Give it a try.

17.8.1. Customizing

The most likely component you want to customize is the IRenameStrategy. This com-
ponent defines how the declaration of the target element is performed. It has two major
responsibilities:

• Apply and revert the declaration change on the semantic model (methods apply-
DeclarationChange and revertDeclarationChange). The default is to look for an
EAttribute name on the target object and set its value using EMFs reflective API.

• Create the LTK Change objects of the declaration change. These changes
will be aggregated, checked for overlaps, presented to you in the preview
and finally executed if you apply the refactoring. The default is to use the
ILocationInFileProvider to locate the text range representing the name and create
a ReplaceEdit for it.

As the IRenameStrategy is a stateful object, you have to bind a custom IRenameStrategy
.Provider to create it.

The second component you might want to customize is the IDependentElementsCalculator
. Dependent elements are those elements whose name change when the target element
is renamed. For example, when you rename a Java class the qualified names of its inner
classes change, too, thus references to these have to be updated as well. This calculation
is performed by the IDependentElementsCalculator. By default, all elements contained
in the target element are added. This matches Xtext’s default strategy of qualified name
computation.

217

17.8.2. Rename Participants

One refactoring can trigger another: When renaming a rule in an Xtext grammar,
the returned EClass should be renamed, too. For these cases, you can register a
RenameParticipant by the common means of LTK. If the target of the participant is
Xtext based, you can use a AbstractProcessorBasedRenameParticipant.

218

18. Xtext and Java

The following chapter demonstrates how to integrate your own DSL with Java. We will
do this in four stages: First, you will learn how to refer to existing Java elements from
within your language. Then you will use Xbase to refer to generic types. In the third
step, you will map your own DSL’s concepts to Java concepts. Last but not least, you
will use both Java types and your concepts within Xbase expressions and execute it.

Throughout this chapter, we will step by step improve the domain model example
from the tutorial (§3).

18.1. Plug-in Setup

In the following, we are going to use the JVM types model and the Xbase language
library. Have a look at your MWE2 workflow and make sure that

• the Xbase models are registered in the standalone setup and

• the TypesGeneratorFragment and the XbaseGeneratorFragment are enabled.

bean = StandaloneSetup {
...
registerGeneratedEPackage = "org.eclipse.xtext.xbase.XbasePackage"
registerGenModelFile = "platform:/resource/org.eclipse.xtext.xbase/model/Xbase.genmodel"

}
...
fragment = types.TypesGeneratorFragment {}
fragment = xbase.XbaseGeneratorFragment {}

To avoid running out of memory when regenerating, make sure to run the workflow
with reasonably sized heap and PermGen space. We recommend at least

-Xmx512m -XX:MaxPermSize=128m
in the VM Arguments section of the Arguments tab of the run configuration. If you are

experiencing ambiguity warnings from Antlr, the usual countermeasures (§14.2.8) apply.
The launch configuration that you get with a new Xtext project is already configured
properly.

219

18.2. Referring to Java Elements using JVM Types

A common case when developing languages is the requirement to refer to existing con-
cepts of other languages. Xtext makes this very easy for other self defined DSLs. How-
ever, it is often very useful to have access to the available types of the Java Virtual
Machine as well. The JVM types Ecore model enables clients to do exactly this. It is
possible to create cross-references to classes, interfaces, and their fields and methods.
Basically every information about the structural concepts of the Java type system is
available via the JVM types. This includes annotations and their specific values and
enumeration literals, too.

The implementation will be selected transparently depending on how the client code
is executed. If the environment is a plain stand-alone Java or OSGi environment, the
java.lang.reflect API will be used to deduce the necessary data. On the contrary, the
type-model will be created from the live data of the JDT in an interactive Eclipse
environment. All this happens transparently for the clients behind the scenes via different
implementations that are bound to specific interfaces by means of Google Guice.

Using the JVM types model is very simple. First of all, the grammar has to import
the JavaVMTypes Ecore model. Thanks to content assist this is easy to spot in the list
of proposals.

import "http://www.eclipse.org/xtext/common/JavaVMTypes" as jvmTypes

The next step is to actually refer to an imported concept. Let’s define a mapping to
available Java types for the simple data types in the domain model language. This can
be done with a simple cross-reference:

// simple cross reference to a Java type
DataType:
’datatype’ name=ID
’mapped-to’ javaType=[jvmTypes::JvmType|QualifiedName];

After regenerating your language, it will be allowed to define a type Date that maps
to the Date like this:

datatype Date mapped-to java.util.Date

These two steps will provide a nice integration into the Eclipse JDT. There is Find
References on Java methods, fields and types that will reveal results in your language
files. Go To Declaration works as expected and content assist will propose the list of
available types. Even the import?statements will also apply for Java types.

220

18.2.1. Customization Points

There are several customization hooks in the runtime layer of the JVM types and on the
editor side as well:

The AbstractTypeScopeProvider can be used to create scopes for members with re-
spect to the override semantics of the Java language. Of course it is possible to use this
implementation to create scopes for types as well.

As the Java VM types expose a lot of information about visibility, parameter types
and return types, generics, available annotations or enumeration literals, it is very easy
to define constraints for the referred types.

The ITypesProposalProvider can be used to provide optimized proposals based on
various filter criteria. The most common selector can be used directly via createSub-
TypeProposals(..). The implementation is optimized and uses the JDT Index directly
to minimize the effort for object instantiation. The class TypeMatchFilters provides a
comprehensive set of reusable filters that can be easily combined to reduce the list of
proposals to a smaller number of valid entries.

18.3. Referring to Java Types Using Xbase

While the JVM types approach from the previous chapter allows to refer to any Java
element, it is quite limited when it comes to generics. Usually, a type reference in Java
can have type arguments which can also include wildcards, upper and lower bounds etc.
A simple cross-reference using a qualified name is not enough to express neither the
syntax nor the structure of such a type reference.

Xbase offers a parser rule JvmTypeReference which supports the full syntax of a Java
type reference and instantiates a JVM element of type JvmTypeReference. So let us
start by inheriting from Xbase:

grammar org.eclipse.xtext.example.Domainmodel
with org.eclipse.xtext.xbase.Xbase

Because we can express all kinds of Java type references directly now, an indirection
for DataTypes as in the previous section is no longer necessary. If we start from the
domain model example in the tutorial (§3) again, we have to replace all cross-references
to Types by calls to the production rule JvmTypeReference. The rules DataType, Type,
and QualifiedName become obsolete (the latter is already defined in Xbase), and the
Type in AbstractEntity must be changed to Entity. As we now have all kinds of generic
Java collections at hand, Feature.many is obsolete, too. The whole grammar now reads
concisely:

grammar org.eclipse.xtext.example.Domainmodel with

221

org.eclipse.xtext.xbase.Xbase

generate domainmodel "http://www.eclipse.org/xtext/example/Domainmodel"

Domainmodel:
importSection=XImportSection?
(elements += AbstractElement)*

;

PackageDeclaration:
’package’ name = QualifiedName ’{’
(elements += AbstractElement)*

’}’
;

AbstractElement:
PackageDeclaration | Entity

;

Entity:
’entity’ name = ID

(’extends’ superType = JvmTypeReference)?
’{’
(features += Feature)*

’}’
;

Feature:
name = ID ’:’ type = JvmTypeReference

;

As we changed the grammar, we have to regenerate the language now.
Being able to parse a Java type reference is already nice, but we also have to write

them back to their string representation when we generate Java code. Unfortunately, a
generic type reference with fully qualified class names can become a bit bulky. There-
fore, the ImportManager shortens fully qualified names, keeps track of imported names-
paces, avoids name collisions, and helps to serialize JvmTypeReferences by means of the
TypeReferenceSerializer. This utility encapsulates how type references may be serialized
depending on the concrete context in the output.

The following snippet shows our code generator using an ImportManager in conjunc-
tion with as TypeReferenceSerializer. We create a new instance and pass it through
the generation functions, collecting types on the way. As the import section in a Java
file precedes the class body, we create the body into a String variable and assemble the
whole file’s content in a second step.

class DomainmodelGenerator implements IGenerator {

222

@Inject extension IQualifiedNameProvider
@Inject extension TypeReferenceSerializer

override void doGenerate(Resource resource, IFileSystemAccess fsa) {
for(e: resource.allContents.toIterable.filter(typeof(Entity))) {
fsa.generateFile(
e.fullyQualifiedName.toString("/") + ".java",
e.compile)

}
}

def compile(Entity it) ’’’
?val importManager = new ImportManager(true)?
?val body = body(importManager)?
?IF eContainer != null?
package ?eContainer.fullyQualifiedName?;

?ENDIF?

?FOR i:importManager.imports?
import ?i?;

?ENDFOR?

?body?
’’’

def body(Entity it, ImportManager importManager) ’’’
public class ?name? ?IF superType != null?
extends ?superType.shortName(importManager)? ?ENDIF?{
?FOR f : features?
?f.compile(importManager)?

?ENDFOR?
}

’’’

def compile(Feature it, ImportManager importManager) ’’’
private ?type.shortName(importManager)? ?name?;

public ?type.shortName(importManager)?
get?name.toFirstUpper?() {
return ?name?;

}

public void set?name.toFirstUpper?(
?type.shortName(importManager)? ?name?) {
this.?name? = ?name?;

}
’’’

223

def shortName(JvmTypeReference ref,
ImportManager importManager) {

val result = new StringBuilderBasedAppendable(importManager)
ref.serialize(ref.eContainer, result);
result.toString

}
}

Please note that when org.eclipse.xtext.xbase.Xbase is used the default binding for
the interface IGenerator is JvmModelGenerator. To use a custom one we have to bind
our own implementation in org.example.domainmodel.DomainmodelRuntimeModule like
this:

public class DomainmodelRuntimeModule extends org.example.domainmodel.AbstractDomainmodelRuntimeModule {
public Class<? extends org.eclipse.xtext.generator.IGenerator> bindIGenerator() {

return org.example.domainmodel.generator.DomainmodelGenerator.class;
}

}

18.4. Inferring a JVM Model

In many cases, you will want your DSLs concepts to be usable as Java elements, e.g.
an Entity will become a Java class and should be usable as such. In the domain model
example, you can write

entity Employee extends Person {
boss: Person

...

entity Person {
friends: List<Person>

...

You can use entities instead of Java types or even mix Java types as List with entities
such as Person. One way to achieve this is to let your concepts inherit from a corre-
sponding JVM type, e.g. let Entity inherit from JvmGenericType. But this would result
in a lot of accidentally inherited properties in your domain model. In Xbase there is an
alternative: You can simply define how to derive a JVM model from your model. This
inferred JVM model is the representation of your concepts in the type system of Xbase.

The main component for the inferred JVM model is the IJvmModelInferrer. It has a
single method that takes the root model element as an argument and produces a number

224

of JvmDeclaredTypes. As Xbase cannot guess how you would like to map your concepts
to JVM elements, you have to implement this component yourself. This usually boils
down to using an injected JvmTypesBuilder to create a hierarchy of JVM elements. The
builder helps to initialize the produced types with sensible defaults and encapsulates the
logic that associates the source elements with the derived JVM concepts. As this kind
of transformation can be elegantly implemented using polymorphic dispatch functions
and extension methods, it is a good choice to write the IJvmModelInferrer in Xtend. It
becomes even simpler if you inherit from the AbstractModelInferrer which traverses the
input model and dispatches to its contents until you decide which elements to handle.

The inference runs in two phases: In the first phase all the types are created with empty
bodies. This way you make sure all types exist when you might lookup types during
initializing the members in the second phase. Use acceptor.accept(JvmDeclaredType,
Procedure1<JvmDeclaredType>) and pass in the created Java type as the first argument
and the initialization block as the second.

For our domain model example, we implement a polymorphic dispatch function infer
for Entities to transform them into a JvmGenericType in the first phase. In the second
phase, we add a JvmField and corresponding accessors for each Property. The final
DomainmodelJvmModelInferrer looks like this:

class DomainmodelJvmModelInferrer extends AbstractModelInferrer {

@Inject extension JvmTypesBuilder

@Inject extension IQualifiedNameProvider

def dispatch void infer(Entity element,
IJvmDeclaredTypeAcceptor acceptor,
boolean isPrelinkingPhase) {

acceptor.accept(element.toClass(element.fullyQualifiedName)) [
documentation = element.documentation
for (feature : element.features) {
members += feature.toField(feature.name, feature.type)
members += feature.toSetter(feature.name, feature.type)
members += feature.toGetter(feature.name, feature.type)

}
]

}
}

Out of the inferred model the corresponding Java class gets generated. To ensure
that this will work make sure that the binding in the rumtime module for IGenerator is
pointing to JvmModelGenerator. This is the default case, but as we dealt with a custom
implementation in the last section this may lead to problems.

225

18.4.1. Linking and Indexing

As Java elements and your concepts are now represented as JVM model elements, other
models can now transparently link to Java or your DSL. In other words, you can use a
mapped element of your DSL in the same places as the corresponding Java type.

The Xbase framework will automatically switch between the JVM element or the DSL
element when needed, e.g. when following hyperlinks. The component allowing to navi-
gate between the source model and the JVM model is called IJvmModelAssociations, the
read-only antagonist of the IJvmModelAssociator that is used by the JvmTypesBuilder.

By default, the inferred model is indexed (§16.7.1), so it can be cross referenced from
other models.

18.5. Using Xbase Expressions

Xbase is an expression language that can be embedded into Xtext languages. Its syntax
is close to Java, but it additionally offers type inference, lambda expressions, a powerful
switch expression and a lot more. For details on this expression language, please consult
the reference documentation (§18.6) and the Xbase tutorial (File > New > Example >
Xtext Examples > Xbase Tutorial).

Xbase ships with an interpreter and a compiler that produces Java code. Thus, it
is easy to add behavior to your DSLs and make them executable. As Xbase integrates
tightly with Java, there is usually no additional code needed to run your DSL as part of
a Java application.

18.5.1. Making Your Grammar Refer To Xbase

If you want to refer to EClassifiers from the Xbase model, you need to import Xbase
first:

import "http://www.eclipse.org/xtext/xbase/Xbase" as xbase

Now identify the location in your grammar where you want references to Java types
and Xbase expressions to appear and call the appropriate rules of the super grammar.
Adding Xbase expression to the domainmodel example leads to the additional concept
Operation: An Operation’s parameters are FullJvmFormalParameters. The production
rule for FullJvmFormalParameters expects both the name and the type here. That is
reasonable since the type of parameters should not be inferred. The operation’s return
type is a JvmTypeReference and its body is an XBlockExpression. The final parser rule
reads as:

Operation:
’op’ name=ValidID ’(’
(params+=FullJvmFormalParameter (’,’ params+=FullJvmFormalParameter)*)? ’)’

226

’:’ type=JvmTypeReference
body=XBlockExpression;

If you are unsure which entry point to choose for your expressions, consider the XBlock-
Expression.

To integrate Operations?in our models, we have to call this rule. We copy the previous
Feature to a new rule Property and let Feature become the super type of Property and
Operation:

Feature:
Property | Operation

;

Property:
name = ID ’:’ type = JvmTypeReference

;

Note: You will have to adapt the IJvmModelInferrer to these changes, i.e. rename
Feature to Property and create a JvmOperation for each Operation. We leave that as an
exercise :-)

If you are done with that, everything will work out of the box. Since each expression is
now logically contained in an operation, all the scoping rules and visibility constraints are
implied from that context. The framework will take care that the operation’s parameters
are visible inside the operation’s body and that the declared return types are validated
against the actual expression types.

There is yet another aspect of the JVM model that can be explored. Since all the
coarse grained concepts such as types and operations were already derived from the
model, a generator can be used to serialize that information to Java code. There is no
need to write a code generator on top of that. The JvmModelGenerator knows how to
generate operation bodies properly.

18.5.2. Using the Xbase Interpreter

Sometimes it is more convenient to interpret a model that uses Xbase than to generate
code from it. Xbase ships with the XbaseInterpreter which makes this rather easy.

An interpreter is essentially an external visitor, that recursively processes a model
based on the model element’s types. In the XbaseInterpreter, the method doEval-
uate(XExpression, IEvaluationContext, CancelIndicator) delegates to more specialised
implementations e.g.

protected Object _doEvaluate(XBlockExpression literal,
IEvaluationContext context,

227

CancelIndicator indicator)

The IEvaluationContext keeps the state of the running application, i.e. the local
variables and their values. Additionally, it can be forked, thus allowing to shadow
the elements of the original context. Here is an example code snippet how to call the
XbaseInterpreter:

@Inject private XbaseInterpreter xbaseInterpreter;

@Inject private Provider<IEvaluationContext> contextProvider;

...
public Object evaluate(XExpression expression, Object thisElement) {
IEvaluationContext evaluationContext = contextProvider.get();
// provide initial context and implicit variables
evaluationContext.newValue(XbaseScopeProvider.THIS, thisElement);

IEvaluationResult result = xbaseInterpreter.evaluate(expression,
evaluationContext, CancelIndicator.NullImpl);

if (result.getException() != null) {
// handle exception

}
return result.getResult();

}

18.6. Xbase Language Reference

This document describes the expression language library Xbase. Xbase is a partial
programming language implemented in Xtext and is meant to be embedded and extended
within other programming languages and domain-specific languages (DSL) written in
Xtext. Xtext is a highly extendible language development framework covering all aspects
of language infrastructure such as parsers, linkers, compilers, interpreters and even full-
blown IDE support based on Eclipse.

Developing DSLs has become incredibly easy with Xtext. Structural languages which
introduce new coarse-grained concepts, such as services, entities, value objects or state-
machines can be developed in minutes. However, software systems do not consist of
structures solely. At some point a system needs to have some behavior, which is usually
specified using so called expressions. Expressions are the heart of every programming
language and are not easy to get right. On the other hand, expressions are well un-
derstood and many programming languages share a common set and understanding of
expressions.

228

That is why most people do not add support for expressions in their DSL but try to
solve this differently. The most often used workaround is to define only the structural
information in the DSL and add behavior by modifying or extending the generated code.
It is not only unpleasant to write, read and maintain information which closely belongs
together in two different places, abstraction levels and languages. Also, modifying the
generated source code comes with a lot of additional problems. This has long time
been the preferred solution since adding support for expressions (and a corresponding
execution environment) for your language has been hard - even with Xtext.

Xbase serves as a language library providing a common expression language bound
to the Java platform (i.e. Java Virtual Machine). It consists of an Xtext grammar, as
well as reusable and adaptable implementations for the different aspects of a language
infrastructure such as an AST structure, a compiler, an interpreter, a linker, and a static
analyzer. In addition it comes with implementations to integrate the expression language
within an Xtext-based Eclipse IDE. Default implementations for aspects like content
assistance, syntax coloring, hovering, folding and navigation can be easily integrated
and reused within any Xtext based language.

Conceptually and syntactically, Xbase is very close to Java statements and expressions,
but with a few differences:

• No checked exceptions

• Everything is an expression, there are no statements

• Lambda expressions

• Type inference

• Properties

• Simple operator overloading

• Powerful switch expressions

18.6.1. Lexical Syntax

Xbase comes with a small set of terminal rules, which can be overridden and hence
changed by users. However the default implementation is carefully chosen and it is
recommended to stick with the lexical syntax described in the following.

Identifiers

Identifiers are used to name all constructs, such as types, methods and variables. Xbase
uses the default identifier-syntax from Xtext - compared to Java, they are slightly sim-
plified to match the common cases while having less ambiguities. They start with a
letter a-z, A-Z or an underscore followed by more of these characters or any digit 0 -9.

229

Escaped Identifiers

Identifiers must not have the same spelling as any reserved keyword. However, this
limitation can be avoided by escaping identifiers with the prefix ˆ. Escaped identifiers
are used in cases when there is a conflict with a reserved keyword. Imagine you have
introduced a keyword service in your language but want to call a Java property service.
In such cases you can use the escaped identifier ˆservice to reference the Java property.

Syntax

terminal ID:
’^’? (’a’..’z’|’A’..’Z’|’_’|’$’) (’a’..’z’|’A’..’Z’|’_’|’$’|’0’..’9’)*

;

Examples

• Foo

• Foo42

• FOO

• 42

• foo

• $$foo$$

• ˆextends

Comments

Xbase comes with two different kinds of comments: Single-line comments and multi-line
comments. The syntax is the same as the one known from Java (see ? 3.7 Comments).

White Space

The white space characters ’ ’, ’\t’, ’\n’, and ’\r’ are allowed to occur anywhere between
the other syntactic elements.

Reserved Keywords

The following list of words are reserved keywords, thus reducing the set of possible
identifiers:

1. as

230

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.7

2. case

3.
catch

4.
default

5.
do

6.
else

7.
extends

8.
extension

9.
false

10.
finally

11.
for

12.
if

13.
import

14.
instanceof

15. new

16.
null

17.
return

18.
static

19. super

20.
switch

21.
throw

22.
true

23.
try

24.
typeof

25.
val

26. var

231

27.
while

The four keywords extends, static, import, extension can be used when invoking op-
erations. In case some of the other keywords have to be used as identifiers, the escape
character for identifiers (§18.6.1) comes in handy.

18.6.2. Types

Basically all kinds of JVM types are available and referable.

Simple Type References

A simple type reference only consists of a qualified name. A qualified name is a name
made up of identifiers which are separated by a dot (like in Java).

There is no parser rule for a simple type reference, as it is expressed as a parameterized
type references without parameters.

Examples

• java.lang.String

• String

Parameterized Type References

The general syntax for type references allows to take any number of type arguments.
The semantics as well as the syntax is almost the same as in Java, so please refer to the
third edition of the Java Language Specification.

The only difference is that in Xbase a type reference can also be a function type. In
the following the full syntax of type references is shown, including function types and
type arguments.

Examples

• String

• java.lang.String

• List<?>

• List<? extends Comparable<? extends FooBar>

• List<? super MyLowerBound>

• List<? extends =>Boolean>

232

http://docs.oracle.com/javase/specs/jls/se7/html/index.html

Primitives

Xbase supports all Java primitives. The conformance rules (e.g. boxing and unboxing)
are also exactly like defined in the Java Language Specification.

Arrays

Arrays cannot be instantiated arbitrarily, but there are a couple of useful library func-
tions that allow to create arrays with a fixed length or an initial value set. Besides this
restriction, they can be passed around and they are transparently converted to a List of
the component type on demand.

In other words, the return type of a Java method that returns an array of ints
(int[]) can be directly assigned to a variable of type List<Integer>. Due to type infer-
ence this conversion happens implicitly. The conversion is bi-directional: Any method
that takes an array as argument can be invoked with an argument that has the type
List<ComponentType> instead.

Function Types

Xbase introduces lambda expressions, and therefore an additional function type signa-
ture. On the JVM-Level a lambda expression (or more generally any function object) is
just an instance of one of the types in Functions, depending on the number of arguments.
However, as lambda expressions are a very important language feature, a special sugared
syntax for function types has been introduced. So instead of writing Function1<String,
Boolean> one can write (String)=>boolean.

For more information on lambda expressions see section 18.6.3.

Examples

• =>Boolean // predicate without parameters

• ()=>String // provider of string

• (String)=>boolean // One argument predicate

• (Mutable)=>void // A procedure doing side effects only

• (List<String>, Integer)=>String

Conformance and Conversion

Type conformance rules are used in order to find out whether some expression can be
used in a certain situation. For instance when assigning a value to a variable, the type
of the right hand expression needs to conform to the type of the variable.

As Xbase implements the type system of Java it also fully supports the conformance
rules defined in the Java Language Specification.

233

http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html

Some types in Xbase can be used synonymously even if they do not conform to each
other in Java. An example for this are arrays and lists or function types with compat-
ible function parameters. Objects of these types are implicitly converted by Xbase on
demand.

Common Super Type

Because of type inference Xbase sometimes needs to compute the most common super
type of a given set of types.

For a set [T1,T2,...Tn] of types the common super type is computed by using the
linear type inheritance sequence of T1 and is iterated until one type conforms to each
T2,..,Tn. The linear type inheritance sequence of T1 is computed by ordering all types
which are part if the type hierarchy of T1 by their specificity. A type T1 is considered
more specific than T2 if T1 is a subtype of T2. Any types with equal specificity will be
sorted by the maximal distance to the originating subtype. CharSequence has distance 2
to StringBuilder because the super type AbstractStringBuilder implements the interface,
too. Even if StringBuilder implements CharSequence directly, the interface gets distance
2 in the ordering because it is not the most general class in the type hierarchy that
implements the interface. If the distances for two classes are the same in the hierarchy,
their qualified name is used as the compare-key to ensure deterministic results.

18.6.3. Expressions

Expressions are the main language constructs which are used to express behavior and
compute values. The concept of statements is not supported, but instead powerful
expressions are used to handle situations in which the imperative nature of statements
would be helpful. An expression always results in a value (it might be the value null or
of type void though). In addition, every resolved expression is of a static type.

Literals

A literal denotes a fixed unchangeable value. Literals for strings, numbers, booleans, null
and Java types are supported. Additionally, there exists a literal syntax for collections
and arrays.

String Literals

String literals can either use ’single quotes’ or ”double quotes” as their terminating
characters. When using double quotes all literals allowed by Java string literals are
supported. In addition new line characters are allowed, i.e. in Xbase string literals can
span multiple lines. When using single quotes the only difference is that single quotes
within the literal have to be escaped and double quotes do not.

See ? 3.10.5 String Literals
In contrast to Java, equal string literals within the same class do not necessarily refer

to the same instance at runtime, especially in the interpreted mode.

234

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.5

Examples

•
’Foo Bar Baz’

•
”Foo Bar Baz”

•
"the quick brown fox jumps over the lazy dog."

•
’Escapes : \’ ’

•
”Escapes : \” ”

Number Literals

Xbase supports roughly the same number literals as Java with a few notable differences.
As in Java 7, you can separate digits using for better readability of large numbers.

An integer literal represents an int, a long (suffix L) or even a BigInteger (suffix BI).
There are no octal number literals.

42
1_234_567_890
0xbeef // hexadecimal
077 // decimal 77 (*NOT* octal)
42L
0xbeef#L // hexadecimal, mind the ’#’
0xbeef_beef_beef_beef_beef#BI // BigInteger

A floating-point literal creates a double (suffix D or omitted), a float (suffix F) or a
BigDecimal (suffix BD). If you use a . sign you have to specify both, the integer and the
fractional part of the mantissa. There are only decimal floating-point literals.

42d // double
0.42e2 // implicit double
0.42e2f // float
4.2f // float
0.123_456_789_123_456_789_123_456_789e2000bd // BigDecimal

Boolean Literals

There are two boolean literals, true and false which correspond to their Java counterpart
of type boolean.

235

•
true

•
false

Null Literal

The null literal is, as in Java, null. It is compatible to any reference type and therefore
always of the null type.

•
null

Type Literals

The syntax for type literals is generally the plain name of the type, e.g. the Xbase
snippet String is equivalent to the Java code String.class. Nested types use the delimiter
’.’.

To disambiguate the expression, type literals may also be specified using the keyword
typeof.

• Map.Entry is equivalent to Map.Entry.class

•
typeof(StringBuilder) yields StringBuilder.class

Consequently it is possible to access the members of a type reflectively by using its
plain name String.getDeclaredFields.

Previous versions of Xbase used the dollar as the delimiter character for nested types:

•
typeof(Map$Entry) yields Map.Entry.class

Type Casts

Type cast behave the same as in Java, but have a more readable syntax. Type casts
bind stronger than any other operator but weaker than feature calls.

The conformance rules for casts are defined in the Java Language Specification.

Examples

• my.foo as MyType

• (1 + 3 * 5 * (- 23)) as BigInteger

236

http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5

Infix Operators / Operator Overloading

There are a couple of common predefined infix operators. In contrast to Java, the op-
erators are not limited to operations on certain types. Instead an operator-to-method
mapping allows users to redefine the operators for any type just by implementing the cor-
responding method signature. The following defines the operators and the corresponding
Java method signatures / expressions.

237

e1 += e2 e1.operator add(e2)
e1 -= e2 e1.operator remove(e2)

e1 || e2 e1.operator or(e2)

e1 && e2 e1.operator and(e2)

e1 == e2 e1.operator equals(e2)
e1 != e2 e1.operator notEquals(e2)
e1 === e2 e1.operator tripleEquals(e2)
e1 !== e2 e1.operator tripleNotEquals(e2)

e1 < e2 e1.operator lessThan(e2)
e1 > e2 e1.operator greaterThan(e2)
e1 <= e2 e1.operator lessEqualsThan(e2)
e1 >= e2 e1.operator greaterEqualsThan(e2)

e1 -> e2 e1.operator mappedTo(e2)
e1 .. e2 e1.operator upTo(e2)
e1 >.. e2 e1.operator greaterThanDoubleDot(e2)
e1 ..< e2 e1.operator doubleDotLessThan(e2)
e1 => e2 e1.operator doubleArrow(e2)
e1 << e2 e1.operator doubleLessThan(e2)
e1 >> e2 e1.operator doubleGreaterThan(e2)
e1 <<< e2 e1.operator tripleLessThan(e2)
e1 >>> e2 e1.operator tripleGreaterThan(e2)
e1 <> e2 e1.operator diamond(e2)
e1 ?: e2 e1.operator elvis(e2)
e1 <=> e2 e1.operator spaceship(e2)

e1 + e2 e1.operator plus(e2)
e1 - e2 e1.operator minus(e2)

e1 * e2 e1.operator multiply(e2)
e1 / e2 e1.operator divide(e2)
e1 % e2 e1.operator modulo(e2)
e1 ** e2 e1.operator power(e2)

! e1 e1.operator not()
- e1 e1.operator minus()
+ e1 e1.operator plus()
The table above also defines the operator precedence in ascending order. The blank

lines separate precedence levels. The assignment operator += is right-to-left associative
in the same way as the plain assignment operator = is. Consequently, a = b = c is

238

executed as a = (b = c). All other operators are left-to-right associative. Parentheses
can be used to adjust the default precedence and associativity.

Short-Circuit Boolean Operators

If the operators || and && are used in a context where the left hand operand is of type
boolean, the operation is evaluated in short circuit mode, which means that the right
hand operand is not evaluated at all in the following cases:

1. in the case of || the operand on the right hand side is not evaluated if the left
operand evaluates to true.

2. in the case of && the operand on the right hand side is not evaluated if the left
operand evaluates to false.

Examples

• my.foo = 23

• myList += 23

• x > 23 && y < 23

• x && y || z

• 1 + 3 * 5 * (- 23)

• !(x)

• my.foo = 23

• my.foo = 23

Assignment Operators

Compound assignment operators can be used as a shorthand for the assignment of a
binary expression.

var BigDecimal bd = 45bd
bd += 12bd // equivalent to bd = bd + 12bd
bd -= 12bd // equivalent to bd = bd - 12bd
bd /= 12bd // equivalent to bd = bd / 12bd
bd *= 12bd // equivalent to bd = bd * 12bd

239

Compound assignments work automatically if the binary operator is declared. The
following compound assignment operators are supported:
e1 += e2 +
e1 -= e2 -
e1 *= e2 *
e1 /= e2 /
e1 %= e2 %

Postfix Operators

The two postfix operators ++ and – use the following method mapping:
e1++ e1.operator plusPlus()
e1– e1.operator minusMinus()

With Operator

The with operator => executes the lambda expression (§18.6.3) with a single parameter
on the right-hand side with a given argument on its left-hand side. The result is the
left operand after applying the lambda expression. In combination with the implicit
parameter (§18.6.3) it this allows very convenient initialization of newly created objects.
Example:

val person = new Person => [
firstName = ’John’
lastName = ’Coltrane’

]
// equivalent to
val person = new Person
person.firstName = ’John’
person.lastName = ’Coltrane’

Assignments

Local variables (§18.6.3) can be reassigned using the = operator. Also properties can be
set using that operator: Given the expression

myObj.myProperty = "foo"

The compiler first looks for an accessible Java Field called myProperty on the declared
or inferred type of myObj. If such a field can be found, the expressions translates to the
following Java code:

240

myObj.myProperty = "foo";

Remember, in Xbase everything is an expression and has to return something. In the
case of simple assignments the return value is the value returned from the corresponding
Java expression, which is the assigned value.

If there is no accessible field on the left operand’s type, a method called setMyProp-
erty(OneArg) (JavaBeans setter method) is looked up. It has to take one argument of
the type (or a super type) of the right hand operand. The return value of the assignment
will be the return value of the setter method (which is usually of type void and therefore
the value null). As a result the compiler translates to :

myObj.setMyProperty("foo")

Feature Calls

A feature call is used to access members of objects, such as fields and methods, but it
can also refer to local variables and parameters, which are made available by the current
expression’s scope.

Property Access

Feature calls are directly translated to their Java equivalent with the exception, that
access to properties follows similar rules as described in section 18.6.3. That is, for the
expression

myObj.myProperty

the compiler first looks for an accessible field myProperty in the type of myObj. If
no such field exists it tries to find a method called myProperty() before it looks for the
getter methods getMyProperty(). If none of these members can be found, the expression
is unbound and a compilation error is indicated.

Null-Safe Feature Call

Checking for null references can make code very unreadable. In many situations it is ok
for an expression to return null if a receiver was null. Xbase supports the safe navigation
operator ?. to make such code more readable.

Instead of writing

241

if (myRef != null) myRef.doStuff()

one can write

myRef?.doStuff()

Static Feature Calls

Static feature calls use the same notation as in Java, e.g. it is possible write Collec-
tions.emptyList() in Xbase. To make the static invocation more explicit, the double
colon can be used as the delimiter. The following snippets are fully equivalent:

java.util.Collections::emptyList

java.util.Collections.emptyList

Prior to Xbase 2.4.2, this more verbose variant was the only supported syntax to
invoke static methods:

java::util::Collections::emptyList

Implicit variables ’this’ and ’it’

If the current scope contains a variable named this or it, the compiler will make all its
members available implicitly. That is if one of

it.myProperty
this.myProperty

is a valid expression

myProperty

242

is valid as well. It resolves to the same feature as long as there is no local variable
myProperty declared, which would have higher precedence.

As this is bound to the surrounding object in Java, it can be used in finer-grained
constructs such as function parameters. That is why it.myProperty has higher prece-
dence than this.myProperty. it is also the default parameter name in lambda expres-
sions (§18.6.3).

Constructor Call

Construction of objects is done by invoking Java constructors. The syntax is exactly as
in Java.

Examples

•
new String()

•
new java.util.ArrayList<java.math.BigDecimal>()

Lambda Expressions

A lambda expression is a literal that defines an anonymous function. Xbase’ lambda
expressions are allowed to access variables of the declarator. Any final variables and
parameters visible at construction time can be referred to in the lambda expression’s
body. These expressions are also known as closures.

Lambda expressions are surrounded by square brackets (\[]):

myList.findFirst([e | e.name==null])

When a function object is expected to be the last parameter of a feature call, you may
declare the lambda expression after the parentheses:

myList.findFirst() [e | e.name==null]

Since in Xbase parentheses are optional for method calls, the same can be written as:

myList.findFirst[e | e.name==null]

243

This example can be further simplified since the lambda’s parameter is available as
the implicit variable it, if the parameter is not declared explicitly:

myList.findFirst[it.name==null]

Since it is implicit, this is the same as:

myList.findFirst[name==null]

Another use case for lambda expressions is to store function objects in variables:

val func = [String s | s.length>3]

Typing

Lambda expressions produce function objects. The type is a function type (§18.6.2),
parameterized with the types of the lambda’s parameters as well as the return type.
The return type is never specified explicitly but is always inferred from the expression.
The parameter types can be inferred if the lambda expression is used in a context where
this is possible.

For instance, given the following Java method signature:

public T <T>getFirst(List<T> list, Function0<T,Boolean> predicate)

the type of the parameter can be inferred. Which allows users to write:

newArrayList("Foo", "Bar").findFirst[e | e == "Bar"]

instead of

newArrayList("Foo", "Bar").findFirst[String e | e == "Bar"]

244

Function Mapping

An Xbase lambda expression is a Java object of one of the Function interfaces that are
part of the runtime library of Xbase. There is an interface for each number of parameters
(up to six parameters). The names of the interfaces are

• Function0<ReturnType> for zero parameters,

• Function1<Param1Type, ReturnType> for one parameters,

• Function2<Param1Type, Param2Type, ReturnType> for two parameters,

• ...

• Function6<Param1Type, Param2Type, Param3Type, Param4Type, Param5Type,
Param6Type, ReturnType> for six parameters,

or

• Procedure0 for zero parameters,

• Procedure1<Param1Type> for one parameters,

• Procedure2<Param1Type, Param2Type> for two parameters,

• ...

• Procedure6<Param1Type, Param2Type, Param3Type, Param4Type,
Param5Type, Param6Type> for six parameters,

if the return type is void.
In order to allow seamless integration with existing Java libraries such as the JDK

or Google Guava (formerly known as Google Collect) lambda expressions are auto co-
erced to expected types if those types declare only one abstract method (methods from
java.lang.Object don’t count).

As a result given the method Collections.sort(List<T>, Comparator<? super T>) is
available as an extension method, it can be invoked like this

newArrayList(’aaa’, ’bb’, ’c’).sort [
e1, e2 | if (e1.length > e2.length) {

-1
} else if (e1.length < e2.length) {
1
} else {
0
}

]

245

Implicit Parameter it

If a lambda expression has a single parameter whose type can be inferred, the declaration
of the parameter can be omitted. Use it to refer to the parameter inside the lambda
expression’s body.

val (String s)=>String function = [toUpperCase]
// equivalent to [it |?it.toUpperCase]

Examples

• [| ”foo”] // lambda expression without parameters

• [String s | s.toUpperCase()] // explicit argument type

• [a, b, c | a+b+c] // inferred argument types

Refering the current function

If a lambda expressions implements an abstract SAM type that offers additional methods,
those can be accessed on the receiver self:

val AbstractIterator<String> emptyIterator = [
return self.endOfData

]

If Expression

An if expression is used to choose two different values based on a predicate. While it
has the syntax of Java’s if statement it behaves like Java’s ternary operator (predicate
? thenPart : elsePart), i.e. it is an expression that returns a value. Consequently, you
can use if expressions deeply nested within other expressions.

An expression if (p) e1 else e2 results in either the value e1 or e2 depending on whether
the predicate p evaluates to true or false. The else part is optional which is a shorthand
for a default value, e.g else null if the type of the if expression is a reference type. If
the type is a primitive type, its default value is assumed accordingly, e.g. else false for
boolean or else 1 for numbers.

That means

if (foo) x

246

is the a short hand for

if (foo) x else null

Typing

The type of an if expression is calculated from the types T1 and T2 of the two expression
e1 and e2. It uses the rules defined in section 18.6.2, if an explicit else branch is given.
If it is ommitted, the type of the if expression is the type T of the expression e of the
form if (b) e.

Examples

•
if (isFoo) this else that

•
if (isFoo) { this } else if (thatFoo) { that } else { other }
•

if (isFoo) this

Switch Expression

The switch expression is a bit different from Java’s, as the use of switch is not limited
to certain values but can be used for any object reference instead.

For a switch expression

switch e {
case e1 : er1
case e2 : er2
...
case en : ern
default : er

}

the main expression e is evaluated first and then each case sequentially. If the switch
expression contains a variable declaration using the syntax known from for loops (§18.6.3),
the value is bound to the given name. Expressions of type Boolean or boolean are not
allowed in a switch expression.

The guard of each case clause is evaluated until the switch value equals the result of
the case’s guard expression or if the case’s guard expression evaluates to true. Then the
right hand expression of the case evaluated and the result is returned.

247

If none of the guards matches the default expression is evaluated and returned. If
no default expression is specified the expression evaluates to the default value of the
common type of all available case expressions.

Example:

switch myString {
case myString.length>5 : ’a long string.’
case ’foo’ : "It’s a foo."
default : "It’s a short non-foo string."

}

Type guards

In addition to the case guards one can add a so called Type Guard which is syntactically
just a type reference (§18.6.2) preceding the than optional case keyword. The compiler
will use that type for the switch expression in subsequent expressions. Example:

var Object x = ...;
switch x {
String case x.length()>0 : x.length()
List<?> : x.size()
default : -1

}

Only if the switch value passes a type guard, i.e. an instanceof test succeeds, the
case’s guard expression is executed using the same semantics as explained above. If the
switch expression contains an explicit declaration of a local variable or the expression
references a local variable, the type guard works like an automated cast. All subsequent
references to the switch value will be of the type specified in the type guard, unless it is
reassigned to a new value.

Fall Through

One can have multiple type guards and cases separated with a comma, to have all of
them share the same then-expression.

def isMale(String salutation) {
switch salutation {
case "Mr.",
case "Sir" : true
default : false

}

248

}

Typing

The type of a switch expression is computed using the rules defined in the section on
common super types (§18.6.2). The set of types from which the common super type is
computed corresponds to the types of each case expression.

Examples

•
switch foo {
Entity : foo.superType.name
Datatype : foo.name
default : throw new IllegalStateException

}

•
switch x : foo.bar.complicated(’hello’, 42) {
case "hello42" : ...
case x.length<2 : ...
default : ...

}

Variable Declarations

Variable declarations are only allowed within blocks (§18.6.3). They are visible in any
subsequent expressions in the block. Generally, overriding or shadowing variables from
outer scopes is not allowed. However, it can be used to overload the implicit vari-
able (§18.6.3) it, in order to subsequently access an object’s features in an unqualified
manner.

A variable declaration starting with the keyword val denotes an unchangeable value,
which is essentially a final variable. In rare cases, one needs to update the value of a
reference. In such situations the variable needs to be declared with the keyword var,
which stands for variable.

A typical example for using var is a counter in a loop.

{
val max = 100
var i = 0
while (i > max) {
println("Hi there!")
i = i +1

249

}
}

Variables declared outside a lambda expression using the var keyword are not accessible
from within a the lambda expression.

Typing

The type of a variable declaration expression is always void. The type of the variable
itself can either be explicitly declared or be inferred from the right hand side expression.
Here is an example for an explicitly declared type:

var List<String> msg = new ArrayList<String>();

In such cases, the right hand expression’s type must conform (§18.6.2) to the type on
the left hand side.

Alternatively the type can be left out and will be inferred from the initialization
expression:

var msg = new ArrayList<String> // -> type ArrayList<String>

Blocks

The block expression allows to have imperative code sequences. It consists of a sequence
of expressions, and returns the value of the last expression. The type of a block is also
the type of the last expression. Empty blocks return null. Variable declarations (§18.6.3)
are only allowed within blocks and cannot be used as a block’s last expression.

A block expression is surrounded by curly braces and contains at least one expression.
It can optionally be terminated by a semicolon.

Examples

{
doSideEffect("foo")
result

}

{

250

var x = greeting();
if (x.equals("Hello ")) {
x+"World!";

} else {
x;

}
}

For Loop

The for loop for (T1 variable : iterableOfT1) expression is used to execute a certain
expression for each element of an array of an instance of Iterable . The local variable is
final, hence cannot be updated.

The type of a for loop is void. The type of the local variable can optionally be inferred
from the type of the array or the element type of the Iterable returned by the iterable
expression.

•
for (String s : myStrings) {
doSideEffect(s);

}

•
for (s : myStrings)
doSideEffect(s)

Basic For Loop

The traditional for loop is very similar to the one known from Java, or even C.

for (<init-expression> ; <predicate> ; <update-expression>) body-expression

When executed, it first executes the init-expression, where local variables can be de-
clared. Next the predicate is executed and if it evaluates to true, the body-expression is
executed. On any subsequent iterations the update-expressio is executed instead of the
init-expression. This happens until the predicate returns false.

The type of a for loop is void.

for (val i = 0 ; i < s.length ; i++) {
println(s.subString(0,i)

}

251

While Loop

A while loop while (predicate) expression is used to execute a certain expression unless
the predicate is evaluated to false. The type of a while loop is void.

Examples

•
while (true) {
doSideEffect("foo");

}

•
while ((i = i + 1) < max)
doSideEffect("foo")

Do-While Loop

A do-while loop do expression while (predicate) is used to execute a certain expression
until the predicate is evaluated to false. The difference to the while loop (§18.6.3) is that
the execution starts by executing the block once before evaluating the predicate for the
first time. The type of a do-while loop is void.

Examples

•
do {
doSideEffect("foo");

} while (true)

•
do doSideEffect("foo") while ((i=i+1)<max)

Return Expression

Although an explicit return is often not necessary, it is supported. In a lambda expression
for instance a return expression is always implied if the expression itself is not of type
void. Anyway you can make it explicit:

listOfStrings.map [e |
if (e==null)
return "NULL"

e.toUpperCase

252

]

Throwing Exceptions

It is possible to throw Throwable. The syntax is exactly the same as in Java.

{
...
if (myList.isEmpty)
throw new IllegalArgumentException("the list must not be empty")

...
}

Try, Catch, Finally

The try-catch-finally expression is used to handle exceptional situations. You are not
forced to declare checked exceptions. If you don’t catch checked exceptions, they are
thrown in a way the compiler does not complain about a missing throws clause, using
the sneaky-throw technique introduced by Lombok.

try {
throw new RuntimeException()

} catch (NullPointerException e) {
// handle e

} finally {
// do stuff

}

Synchronized

The synchonized expression does the same as it does in Java (see Java Language Spec-
ification). The only difference is that in Xtend it is an expression and can therefore be
used at more places.

synchronized(lock) {
println("Hello")

}

253

http://projectlombok.org/features/SneakyThrows.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19

val name = synchronized(lock) {
doStuff()

}

18.6.4. Extension Methods

Languages extending Xbase might want to contribute to the feature scope. Besides that,
one can of course change the whole implementation as it seems fit. There is a special
hook, which can be used to add so-called extension methods to existing types.

Xbase itself comes with a standard library of such extension methods adding support
for various operators for the common types, such as String, List, etc.

These extension methods are declared in separate Java classes. There are various
ways how extension methods can be added. In the simplest case the language designer
predefines which extension methods are available. Language users cannot add additional
library functions using this mechanism.

Another alternative is to have them looked up by a certain naming convention. Also for
more general languages it is possible to let users add extension methods using imports or
similar mechanisms. This approach can be seen in the language Xtend, where extension
methods are lexically imported through static imports and/or dependency injection.

The precedence of extension methods is always lower than real member methods, i.e.
you cannot override member features. Also the extension members are not invoked poly-
morphic. If you have two extension methods on the scope (foo(Object) and foo(String))
the expression (foo as Object).foo would bind and invoke foo(Object).

Examples

• foo

• my.foo

• my.foo(x)

• oh.my.foo(bar)

Builder Syntax

If the last argument of a method call is a lambda expression, it can be appended to the
method call. Thus,

foo(42) [String s | s.toUpperCase]

254

http://www.xtend-lang.org

will call a Java method with the signature

void foo(int, Function1<String, String>)

Used in combination with the implicit parameter name in lambda expressions (§18.6.3)
you can write extension libraries (§18.6.4) to create and initialize graphs of objects in a
concise builder syntax like in Groovy. Consider you have a set of library methods

HtmlNode html(Function1<HtmlNode, Void> initializer)
HeadNode head(HtmlNode parent, Function1<HeadNode, Void> initializer)
...

that create DOM elements for HTML pages inside their respective parent elements.
You can then create a DOM using the following Xbase code:

html([html |?
head(html, [
// initialize head

])
])

Appending the lambda expression parameters and prepending the parent parameters
using extension syntax yields

html() [html |?
html.head() [
// initialize head

]
]

Using implicit parameter it and skipping empty parentheses you can simplify this to

html [
head [
// initialize head

]
]

255

19. MWE2

The Modeling Workflow Engine 2 (MWE2) is a rewritten backwards compatible imple-
mentation of the Modeling Workflow Engine (MWE). It is a declarative, externally con-
figurable generator engine. Users can describe arbitrary object compositions by means
of a simple, concise syntax that allows to declare object instances, attribute values and
references. One use case - that’s where the name had its origins - is the definition of
workflows. Such a workflow consists usually of a number of components that interact
with each other. There are components to read EMF resources, to perform operations
(transformations) on them and to write them back or to generate any number of other
artifacts out of the information. Workflows are typically executed in a single JVM.
However there are no constraints the prevent implementors to provide components that
spawn multiple threads or new processes.

19.1. Examples

Let’s start with a couple of examples to demonstrate some usage scenarios for MWE2.
The first example is a simple HelloWorld module that does nothing but print a message
to standard out. The second module is assembled of three components that read an Ecore
file, transform the contained classifier-names to upper-case and serialize the resource back
to a new file. The last example uses the life-cycle methods of the IWorkflowComponent
to print the execution time of the workflow.

19.1.1. The Simplest Workflow

The arguably shortest MWE2 module may look like the following snippet:

module HelloWorld

SayHello {
message = "Hello World!"

}

It configures a very simple workflow component with a message that should be printed
to System.out when the workflow is executed. The module begins with a declaration of
its name. It must fulfill the Java conventions for fully qualified class-names. That’s why
the module HelloWorld has to be placed into the default package of a Java source folder.
The second element in the module is the class-name SayHello which introduces the root

256

element of the module. The interpreter will create an instance of the given type and
configure it as declared between the curly braces. E.g. the assignment message = ”Hello
World!” in the module will be interpreted as an invocation of the setMessage(String)
on the instantiated object. As one can easily imagine, the implementation of the class
SayHello looks straight forward:

import org.eclipse.emf.mwe2.runtime.workflow.IWorkflowComponent;
import org.eclipse.emf.mwe2.runtime.workflow.IWorkflowContext;

public class SayHello implements IWorkflowComponent {

private String message = "Hello World!";
public void setMessage(String message) {
this.message = message;

}
public String getMessage() {
return message;

}

public void invoke(IWorkflowContext ctx) {
System.out.println(getMessage());

}

public void postInvoke() {}
public void preInvoke() {}

}

It looks like a simple POJO and that’s the philosophy behind MWE2. It is easily
possible to assemble completely independent objects in a declarative manner. To make
the workflow executable with the Mwe2Runner, the component SayHello must be nested
in a root workflow:

module HelloWorld

Workflow {
component = SayHello {
message = "Hello World!"

}
}

The package org.eclipse.emf.mwe2.runtime.workflow of the class Workflow is implicitly
imported in MWE2 modules to make the the modules more concise. The execution result
of this workflow will be revealed after a quick Run As .. -> MWE2 Workflow in the
console as

257

Hello World!

19.1.2. A Simple Transformation

The following workflow solves the exemplary task to rename every EClassifier in an
*.ecore file. It consists of three components that read, modify and write the model file:

module Renamer
Workflow {
component = ResourceReader {

uri = "model.ecore"
}
component = RenamingTransformer {}
component = ResourceWriter {

uri = "uppercaseModel.ecore"
}

}

The implementation of these components is surprisingly simple. It is easily possible
to create own components even for minor operations to automate a process.

The ResourceReader simply reads the file with the given URI and stores it in a so called
slot of the workflow context. A slot can be understood as a dictionary or map-entry.

public class ResourceReader extends WorkflowComponentWithSlot {
private String uri;
public void invoke(IWorkflowContext ctx) {
ResourceSet resourceSet = new ResourceSetImpl();
URI fileURI = URI.createFileURI(uri);
Resource resource = resourceSet.getResource(fileURI, true);
ctx.put(getSlot(), resource);

}

public void setUri(String uri) {
this.uri = uri;

}
public String getUri() {
return uri;

}
}

The actual transformer takes the model from the slot and modifies it. It simply iterates
the content of the resource, identifies each EClassifier and sets its name.

258

public class RenamingTransformer extends WorkflowComponentWithSlot {
private boolean toLowerCase = false;
public void invoke(IWorkflowContext ctx) {
Resource resource = (Resource) ctx.get(getSlot());
EcoreUtil.resolveAll(resource);
Iterator<Object> contents = EcoreUtil.getAllContents(resource, true);
Iterator<EClassifier> iter =

Iterators.filter(contents, EClassifier.class);
while(iter.hasNext()) {
EClassifier classifier = (EClassifier) iter.next();
classifier.setName(isToLowerCase()

? classifier.getName().toLowerCase()
: classifier.getName().toUpperCase());

}
}

public void setToLowerCase(boolean toLowerCase) {
this.toLowerCase = toLowerCase;

}
public boolean isToLowerCase() {
return toLowerCase;

}
}

After the model has been modified it should be written to a new file. That’s what
the ResourceWriter does. It actually takes the resource from the given slot and saves it
with the configured URI:

public class ResourceWriter extends WorkflowComponentWithSlot {
private String uri;
public void invoke(IWorkflowContext ctx) {
Resource resource = (Resource) ctx.get(getSlot());
URI uri = URI.createFileURI(getUri());
uri = resource.getResourceSet().getURIConverter().normalize(uri);
resource.setURI(uri);
try {
resource.save(null);

} catch (IOException e) {
throw new WrappedException(e);

}
}

public void setUri(String uri) {
this.uri = uri;

}

259

public String getUri() {
return uri;

}
}

Last but not least, the common super type for those components looks like this:

public abstract class WorkflowComponentWithSlot
implements IWorkflowComponent {

private String slot = "model";
public void setSlot(String slot) {
this.slot = slot;

}
public String getSlot() {
return slot;

}

public void postInvoke() {}
public void preInvoke() {}

}

Each of the mentioned implementations is rather simple and can be done in a couple
of minutes. Many tedious tasks that developers face in their daily work can be addressed
by a chain of rather simple components. MWE2 can be used to automate these tasks
with minimum effort.

19.1.3. A Stop-Watch

The last example demonstrates how to combine the MWE2 concepts to create a simple
stop-watch that allows to measure the execution time of a set of components. The idea
is to add the very same stop-watch twice as a component to a workflow. It will measure
the time from the first pre-invoke to the last post-invoke event and print the elapsed
milliseconds to the console.

public class StopWatch implements IWorkflowComponent {
private long start;
private boolean shouldStop = false;
public void invoke(IWorkflowContext ctx) {}

public void postInvoke() {
if (shouldStop) {
long elapsed = System.currentTimeMillis() - start;
System.out.println("Time elapsed: " + elapsed + " ms");

}

260

shouldStop = true;
}

public void preInvoke() {
start = System.currentTimeMillis();

}
}

Clients who want to leverage this kind of stop-watch may use the following pattern.
The instance of the class StopWatch has to be added as the first component and the
last component to a workflow. Every component in-between will be measured. In this
case, it is another workflow that does not need know about this decoration. The idea is
to use a local identifier for the instantiated StopWatch and reuse this one at the end to
receive the post-invoke life-cycle event twice.

module MeasuredWorkflow

Workflow {
component = StopWatch: stopWatch {}
component = @OtherWorkflow {}
component = stopWatch

}

19.2. Language Reference

MWE2 has a few well defined concepts which can be combined to assemble arbitrary
object graphs in a compact and declarative manner.

• A MWE2 file defines a module which exposes its root component as reusable arti-
fact.

• Properties can be used to extract reusable, configurable parts of the workflow.

• Components are mapped to plain vanilla Java objects. Arbitrary setABC(..) and
addXYZ(..) methods are used to configure them.

Let’s consider the follow short example module and SampleClass to explain these
concepts.

module com.mycompany.Example

import java.util.*

261

SampleClass {
singleValue = ’a string’
multiValue = ArrayList {}
child = {}

}

package com.mycompany;

import java.util.List;

public class SampleClass {
public void setSingleValue(String value) {..}
public void addMultiValue(List<?> value) {..}
public void addChild(SampleClass value) {..}

}

19.2.1. Mapping to Java Classes

The module com.mycompany.Example defines a root component of type com.mycompany.SampleClass.
It is possible to use the simple class-name because MWE2 uses the very same visibility
rules as the Java compiler. Classes that are in the same package as the module can be
referenced by their simple name. The same rule applies for classes from the java.lang
package. For convenience reasons is the package org.eclipse.emf.mwe2.runtime.workflow
implicitly imported as well as it exposes some library workflow components. However,
the imports are more flexible then in Java since MWE2-imports can be relative, e.g. the
import java.* resolves the reference util.ArrayList to java.util.ArrayList.

The root instance of type SampleClass has to be configured after it has been created.
Therefore the method setSingleValue will be called at first. The given parameter is ’a
string’. The method is identified by its name which starts with set. To allow to assign
multi-value properties, MWE provides access to methods called add* as well.

If the right side of the assignment in the workflow file does not define a class explicitly,
its type is inferred from the method parameter. The line child = {} is equivalent to child
= SampleClass {} and creates a new instance of SampleClass.

MWE2 ships with nice tool support. The editor will provide content assist for the
allowed types and highlight incompatible assignments. The available properties for Java
classes will be proposed as well.

19.2.2. Module

As MWE2 modules have a fully qualified name, it is possible to refer to them from other
modules. The type of the module is derived from the type of its root component. The
com.mycompany.Example can be assigned at any place where a com.mycompany.SampleClass
is expected.

262

Let’s create a second module com.mycompany.Second like this:

module com.mycompany.sub.Second

import com.mycompany.*

SampleClass {
child = @Example {}

}

The child value will be assigned to an instance of SampleClass that is configured as in
the first example workflow. This enables nice composition and a very focused, reusable
component design.

As the same rules apply in MWE2 like in Java, the module com.mycompany.sub.Second
has to be defined in a file called Second.mwe2 in the package com.mycompany.sub. The
import semantic for other modules is the same as for classes. The import statement
allows to refer to com.mycompany.Example with a shortened name.

19.2.3. Properties

MWE2 allows to extract arbitrary information into properties to ensure that these pieces
are not cluttered around the workflow and to allow for easier external customization.
The exemplary component definition was only changed slightly by introducing a property
value.

module com.mycompany.Example

var value = ’a string’

SampleClass {
singleValue = value

}

The type of the property will be derived from the default value similar to the mech-
anism that is already known from set- and add-methods. If no default value is given,
String will be assumed. However, properties are not limited to strings. The second built
in type is boolean via the familiar literals true and false. More flexibility is available via
actual component literals.

module com.mycompany.Example

var childInstance = SampleClass {

263

singleValue = "child"
}

SampleClass {
child = childInstance

}

If one wants to define string properties that are actual reusable parts for other prop-
erties, she may use defined variables inside other literals like this:

var aString = "part"
var anotherString = "reuse the ${part} here"

This is especially useful for file paths in workflows as one would usually want to define
some common root directories only once in the workflow and reuse this fragment across
certain other file locations.

19.2.4. Mandatory Properties

It is not always feasible to define default values for properties. That is where mandatory
properties come into play. Modules define their interface not only via their fully qualified
name and the type of the root component but also by means of the defined properties.

module com.mycompany.Example

var optional = ’a string’
var mandatory

SampleClass {
singleValue = optional
child = {
singleValue = mandatory

}
}

This version of the example module exposes two externally assignable properties. The
second one has no default value assigned and is thereby considered to be mandatory.
The mandatory value must be assigned if we reuse org.mycompany.Example in another
module like this:

module com.mycompany.Second

264

var newMandatory

@Example {
mandatory = "mandatoryValue"
optional = newMandatory

}

Note that it is even possible to reuse another module as the root component of a new
module. In this case we set the mandatory property of Example to a specific constant
value while the previously optional value is now redefined as mandatory by means of a
new property without a default value.

It is not only possible to define mandatory properties for MWE2 modules but for
classes as well. Therefore MWE2 ships with the Mandatory annotation. If a set- or
add-method is marked as Mandatory, the module validation will fail if no value was
assigned to that feature.

19.2.5. Named Components

Properties are not the only way to define something that can be reused. It is possible
to assign a name to any instantiated component whether it’s created from a class literal
or from another component. This allows to refer to previously created and configured
instances. Named instances can come handy for notification and call-back mechanisms
or more general in terms of defined life-cycle events.

If we wanted to assign the created instance to a property of itself, we could use the
following syntax:

module com.mycompany.Example

SampleClass : self {
child = self

}

A named component can be referenced immediately after its creation but it is not
possible to use forward references in a MWE2 file.

19.2.6. Auto Injection

Existing modules or classes often expose a set of properties that will be assigned to
features of its root component or set- and add- methods respectively. In many cases its
quite hard to come up with yet another name for the very same concept which leads to
the situation where the properties itself have the very same name as the component’s
feature. To avoid the overall repetition of assignments, MWE2 offers the possibility to
use the auto-inject modifier on the component literal:

265

module com.mycompany.Example

var child = SampleClass {}

SampleClass auto-inject {
}

This example will implicitly assign the value of the property child to the feature child
of the root component. This is especially useful for highly configurable workflows that
expose dozens of optional parameters each of which can be assigned to one or more
components.

The auto-inject modifier can be used for a subset of the available features as well. It
will suppressed for the explicitly set values of a component.

19.3. Syntax Reference

The following chapter serves as a reference for the concrete syntax of MWE2. The
building blocks of a module will be described in a few words.

MWE2 is not sensitive to white space and allows to define line-comments and block
comments everywhere. The syntax is the same as one is used to from the Java language:

// This is a comment
/*
This is another one.

*/

Every name in MWE2 can be a fully qualified identifier and must follow the Java
conventions. However, in contrast to Java identifiers it is not allowed to use German
umlauts or Unicode escape sequences in identifiers. A valid ID-segment in MWE2 starts
with a letter or an underscore and is followed by any number of letters, numbers or
underscores. An identifier is composed from one or more segments which are delimited
by a ’.’ dot.

Name: ID (’.’ ID)*;
ID: (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

MWE2 does not use a semicolon as a statement delimiter at any place.

266

19.3.1. Module

A module consists of four parts. The very first statement in a *.mwe2 file is the module
declaration. The name of the module must follow the naming convention for Java classes.
That MWE2 file’s name must therefore be the same as the last segment of the module-
name and it has to be placed in the appropriate package of a Java source path.

It is allowed to define any number of import statements in a module. Imports are
either suffixed by a wildcard or they import a concrete class or module. MWE2 can
handle relative imports in case one uses the wildcard notation:

’import’ name ’.*’?

19.3.2. Property

The list of declared properties follows the optional import section. It is allowed to define
modules without any properties.

Each declared property is locally visible in the module. It furthermore defines an
assignable feature of the module in case one refers to it from another module. Properties
may either have a default value or they are considered to be mandatory. If the type
of property is omitted it will be inferred from the default value. The default type of a
property is String. That is, if no default value is available, the property is mandatory
and of type String.

There are four types of values available in MWE2. One may either define a string,
boolean or component literal or a reference to a previously defined property.

19.3.3. Component

The building block of a module is the root component. It defines the externally visible
type of the module and may either be created from a Java type or from another module.

267

The type of the component can be derived in many cases except for the root com-
ponent. That’s why it’s optional in the component literal. If no type is given, it will
be inferred from the left side of the assignment. The assigned feature can either be a
declared property of the module or a set- or add-method of a Java class.

Components can be named to make them referable in subsequent assignments. Fol-
lowing the ’:’ keyword, one can define an identifier for the instantiated component. The
identifier is locally visible in the module and any assignment that is defined after the
named component can refer to this identifier and thereby exactly point to the instanti-
ated object.

The next option for a component is auto-inject. If this modifier is set on a compo-
nent, any available feature of the component that has the same name as a property or
previously created named component will be automatically assigned.

The core of a component is the list of assignments between the curly braces. An
arbitrary number of values can be set on the component by means of feature-to-value
pairs.

The available constructs on the right hand side of the assignment are the same as for
default values for properties.

19.3.4. String Literals

String values are likely to be the most used literals in MWE2. There is a convenient
syntax for string concatenation available due to the high relevance in a descriptive object
composition and configuration language. MWE2 strings are multi-line strings and can
be composed of several parts.

var aString = ’a value’
var anotherString = ’It is possible to embed ${aString} into a multi-line string’

268

This is especially convenient for path-substitution if one defines e.g. a common root
directory and wants to specify other paths relative to the base.

There are two different delimiters available for strings. Users are free to either use
single- or double-quotes to start and end strings. If a certain string contains a lot of
single-quotes one would better choose double-quotes as delimiter and vice versa. There
is no semantic difference between both notations.

The escape character in MWE2 is the back-slash ”\\”. It can be used to write line-
breaks or tabular characters explicitly and to escape the beginning of substitution vari-
ables ${ and the quotes itself. Allowed escape sequences are:
\n .. line break
\r .. carriage return
\t .. tabular character
\’ .. single-quote (can be omitted

in double-quoted strings)
\” .. double-quote (can be omitted

in single-quoted strings)
\${ .. escape the substitution vari-

able start ${
\\ .. the back-slash itself
Other escape sequence are illegal in MWE2 strings.

19.3.5. Boolean Literals

MWE2 has native support for the boolean type. The literals are true and false.

19.3.6. References

Each assigned value in MWE2 either as default for properties or in a component assign-
ment can be a reference to a previously declared property or named component. The
can be referenced intuitively by their name.

269

20. Typical Language Configurations

20.1. Case Insensitive Languages

In some cases, e.g. if your SHIFT key is broken, you might want to design a case
insensitive language. Xtext offers options on some its generator fragments (§15.1.2) for
this purpose.

For case insensitive keywords, open your MWE workflow and replace the ANTLR
related fragments:

// The antlr parser generator fragment.
fragment = parser.antlr.XtextAntlrGeneratorFragment {
// options = {
// backtrack = true
// }
}
...

// generates a more lightweight ANTLR parser and lexer tailored ...
fragment = parser.antlr.XtextAntlrUiGeneratorFragment {
}

with

// The antlr parser generator fragment.
fragment = parser.antlr.ex.rt.AntlrGeneratorFragment {

options = {
ignoreCase = true

}
}
...

// generates a more lightweight ANTLR parser and lexer tailored ...
fragment = parser.antlr.ex.ca.ContentAssistParserGeneratorFragment {

options = {
ignoreCase = true

}
}

270

For case insensitive element names, use the ignoreCase option in your scope fragment,
i.e.

fragment = scoping.ImportNamespacesScopingFragment {
ignoreCase = true

}

or if you are using importURI based global scopes (§16.7.1)

fragment = scoping.ImportURIScopingFragment {
ignoreCase = true

}

20.2. Languages Independent of JDT

The following section describes how you make your language independent of Eclipse’s
Java Development Toolkit (JDT).

In the UIModule of your language you have to overwrite two bindings. First, remove
the bindings to components with support for the ’classpath:’ URI protocol, i.e.

@Override
public Class<? extends IResourceForEditorInputFactory>

bindIResourceForEditorInputFactory() {
return ResourceForIEditorInputFactory.class;

}

@Override
public Class<? extends IResourceSetProvider> bindIResourceSetProvider() {

return SimpleResourceSetProvider.class;
}

Second, configure the global scope provider to scan project root folders instead of the
class path of Java projects.

@Override
public Provider<IAllContainersState> provideIAllContainersState() {
return org.eclipse.xtext.ui.shared.Access.getWorkspaceProjectsState();

}

271

The remaining steps show you how to adapt the project wizard for your language, if you
have generated one. The best way to do this is to create a new subclass of the generated
IProjectCreator in the src/ folder of the ui project and apply the necessary changes
there. First, remove the JDT project configuration by overriding configureProject with
an empty body.

The next thing is to redefine the project natures and builders that should be applied
to you language projects.

In in this case just remove the JDT stuff in this way:

protected String[] getProjectNatures() {
return new String[] {

"org.eclipse.pde.PluginNature",
"org.eclipse.xtext.ui.shared.xtextNature"

};
}

protected String[] getBuilders() {
return new String[] {

"org.eclipse.pde.ManifestBuilder",
"org.eclipse.pde.SchemaBuilder"

};
}

After that you have to bind the new IProjectCreator

@Override
public Class<? extends IProjectCreator> bindIProjectCreator() {

return JDTFreeMyDslProjectCreator.class;
}

Now your language and its IDE should now no longer depend on JDT.

20.3. Parsing Expressions with Xtext

Parsing simple XML-like, structural languages with Xtext is a no-brainer. However,
parsing nested expressions is often considered complicated. This is the perception due
to their recursive nature and the properties of the parser technology used by Xtext. You
have to avoid left recursive parser rules. As the underlying Antlr parser uses a top-down
approach it would recurse endlessly if you had a left recursive grammar.

Let’s have a look at parsing a simple arithmetic expression:
2 + 20 * 2

272

If you know EBNF a bit and wouldn’t think about avoiding left recursion, operator
precedence or associativity, you’ld probably write a grammar like this:

Expression :
Expression ’+’ Expression |
Expression ’*’ Expression |
INT;

This grammar would be left recursive because the parser reads the grammar top
down and left to right and would endlessly call the Expression rule without consuming
any characters, i.e. altering the underlying state of the parser. While this kind of
grammar can be written for bottom-up parsers, you would still have to deal with operator
precedence in addition. That is define that a multiplication has higher precedence than
an addition for example.

In Xtext you define the precedence implicitly when left-factoring such a grammar.
Left-factoring means you get rid of left recursion by applying a certain idiom, which is
described in the following.

Here is a left-factored grammar (not yet working with Xtext) for the expression lan-
guage above:

Addition :
Multiplication (’+’ Multiplication)*;

Multiplication:
NumberLiteral (’*’ NumberLiteral)*;

NumberLiteral:
INT;

As you can see the main difference is that it uses three rules instead of one and if you
look a bit closer you see, that there’s a certain delegation pattern involved. The rule
Addition doesn’t call itself but calls Multiplication instead. The operator precedence is
defined by the order of delegation. The later the rule is called the higher is its precedence.
This is at least the case for the first two rules which are of a left recursive nature (but
we’ve left-factored them now). The last rule is not left recursive which is why you can
implement it without applying this pattern.

The next task is to allow users to explicitly adjust precedence by adding parentheses,
e.g. write something like (2 + 20) * 2. So let’s add support for that (note that the
grammar is still not working with Xtext):

Addition :

273

Multiplication (’+’ Multiplication)*;

Multiplication:
Primary (’*’ Primary)*;

Primary :
NumberLiteral |
’(’ Addition ’)’;

NumberLiteral:
INT;

Once again: if you have some construct that recurses on the left hand side, you need
to put it into the delegation chain according to the operator precedence. The pattern
is always the same: the thing that recurses delegates to the rule with the next higher
precedence.

20.3.1. Construction of an AST

Now that left recursion is avoided, the parser should produce a proper syntax tree. In
Xtext each rule returns a value. Production rules return AST nodes (i.e. instances of
EObject), enum rules return enum literals and data type rules as well as terminal rules
return simple values like strings. Xtext can automatically infer whether some rule is a
production rule, i.e. constructs and returns an AST node, or if it is a data type rule
that returns a value. The grammar above only consists of data type rules all of them
returning plain strings. In order to construct an AST we need to add assignments and
actions to the grammar.

The return type of a rule can be specified explicitly using the returns keyword but can
be inferred if the type’s name is the same as the rule’s name. That is

NumberLiteral : ... ;

is a short form of

NumberLiteral returns NumberLiteral : ... ;

However in the case of the expression grammar above, all rules need to return the
same type since they are recursive. In order to make the grammar valid, a common
return type has to be added explicitly (but the grammar is still missing some bits):

274

Addition returns Expression:
Multiplication (’+’ Multiplication)*;

Multiplication returns Expression:
Primary (’*’ Primary)*;

Primary returns Expression:
NumberLiteral |
’(’ Addition ’)’;

NumberLiteral:
INT;

The AST type inference mechanism of Xtext will infer two types: Expression and
NumberLiteral. Assignments and actions have to added to store all the important infor-
mation in the AST and to create reasonable subtypes for the additive and multiplicative
expressions. The fully working Xtext grammar is this:

Addition returns Expression:
Multiplication ({Addition.left=current} ’+’ right=Multiplication)*;

Multiplication returns Expression:
Primary ({Multiplication.left=current} ’*’ right=Primary)*;

Primary returns Expression:
NumberLiteral |
’(’ Addition ’)’;

NumberLiteral:
value=INT;

This is how the parser processes the following expression:

(1 + 20) * 2

It always starts with the first rule (Addition). Therein the first element is an unas-
signed rule call to Multiplication which in turn calls Primary. Primary now has two
alternatives. The first one is calling NumberLiteral which consists only of one assign-
ment to a feature called ’value’. The type of ’value’ has to be compatible to the return
type of the INT rule.

275

But as the first token in the sample expression is an opening parenthesis ’(’ the parser
will take the second alternative in Primary: it consumes the ’(’ and calls the rule Addi-
tion. Now the value ’1’ is the lookahead token and again Addition calls Multiplication
and Multiplication calls Primary. This time the parser takes the first alternative because
’1’ was consumed by the INT rule.

As soon as the parser hits an assignment it checks whether an AST node for the
current rule was already created. Otherwise it will create one based on the return
type of the current rule, which is NumberLiteral. The Xtext generator created the
EClass ’NumberLiteral’ before which can now be instantiated. That type will also have
a property called value of type int , which will get the value ’1’ set. This is what the
Java equivalent looks like:

// value=INT
if (current == null)
current = new NumberLiteral();
current.setValue(ruleINT());
...

Now that the rule has been completed the produced EObject is returned to the calling
rule Primary, which in turn returns the object unchanged to its own caller. Within
Multiplication the rule Primary has been successfully parsed and returned an instance
of NumberLiteral. The remainder of the rule (everything within the parentheses) is
a so called group. The asterisk behind the closing parenthesis states that this part
can be consumed zero or more times. The first token to consume in this group is
the multiplication operator ’*’. Unfortunately in the current input the next token to
accept is the plus sign ’+’, so the group is not consumed at all and the rule returns the
NumberLiteral that was returned from the previous unassigned rule call.

In rule Addition there is a similar group but this time it expects the correct operator.
The parser steps into the group. The first element in the group is an assigned action.
It will create a new instance of type Addition and assigns what was the to-be-returned
object to the feature ’left’. In Java this would have been something like:

// Multiplication rule call
current = ruleMultiplication();
// {Addition.left=current}
Addition temp = new Addition();
temp.setLeft(current);
current = temp;
...

As a result the rule would now return an instance of Addition which has a Number-
Literal set to its property left. Next up the parser consumes the ’+’ operator. The

276

operator itself is not stored in the AST because there is an explicit Addition type. It
implicitly contains this information. The assignment right=Multiplication calls the rule
Multiplication another time and assigns its result object (a NumberLiteral of value=20)
to the property right. The closing parenthesis is matched afterwards, consumed and the
parser stack is reduced once more.

The parser is now in the rule Multiplication and has the multiplication operator ’*’
on the lookahead. It steps into the group and applies the action. Finally it calls the
Primary rule, produces another instance of NumberLiteral (value=2), assigns it as the
’right’ operand of the Multiplication and returns the Multiplication to the rule Addition
which in turn returns the very same object as there’s nothing left to parse.

The resulting AST looks like this:

visualizes and explains the details.

20.3.2. Associativity

There is still one topic worth to mention, which is associativity. There is left and right
associativity as well as non-associativity. The example implemented left associativity.
Associativity tells the parser how to construct the AST when there are two infix opera-
tions with the same precedence. The following example is taken from the corresponding
wikipedia entry:

Consider the expression a ˜ b ˜ c. If the operator ˜ has left associativity, this expression
would be interpreted as (a ˜ b) ˜ c and evaluated left-to-right. If the operator has right
associativity, the expression would be interpreted as a ˜ (b ˜ c) and evaluated right-
to-left. If the operator is non-associative, the expression might be a syntax error, or it
might have some special meaning. The most common variant is left associativity:

Addition returns Expression:
Multiplication ({Addition.left=current} ’+’ right=Multiplication)*;

277

Right associativity is done using a slightly modified pattern. Note the quantity oper-
ator and the call to the rule itself in the group:

Addition returns Expression:
Multiplication ({Addition.left=current} ’+’ right=Addition)?;

Non-associativity can be implemented in a similar way, but this time the final rule call
is not immediately recursive but delegates to the next precedence level:

Addition returns Expression:
Multiplication ({Addition.left=current} ’+’ right=Multiplication)?;

Sometimes it’s more convenient to allow associativity on parser level, but forbid it
later using validation. This allows more descriptive diagnostics. Also the whole parsing
process won’t rely on error recovery but the editor will generally be more forgiving.

278

21. Integration with EMF and Other EMF
Editors

Xtext relies heavily on EMF internally, but it can also be used as the serialization back-
end of other EMF-based tools. In this section we introduce the basic concepts of the
Eclipse Modeling Framework (EMF) in the context of Xtext. If you want to learn more
about EMF, we recommend reading the EMF book.

21.1. Model, Ecore Model, and Ecore

Xtext uses EMF models as the in-memory representation of any parsed text files. This
in-memory object graph is called the Abstract Syntax Tree (AST). Depending on the
community this concepts is also called document object graph (DOM), semantic model,
or simply model. We use model and AST interchangeably. Given the example model
from the tutorial (§2), the AST looks similar to this

Figure 21.1.: Sample AST

The AST should contain the essence of your textual models. It abstracts over syn-
tactical information. It is used by later processing steps, such as validation, compilation
or interpretation. In EMF a model is made up of instances of EObjects which are con-
nected and an EObject is an instance of an EClass. A set of EClasses if contained
in a so called EPackage, which are both concepts of Ecore In Xtext, meta models are

279

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

either inferred from the grammar or predefined by the user (see the section on pack-
age declarations (§14.2.2) for details). The next diagram shows the meta model of our
example:

Figure 21.2.: Sample meta model

The language in which the meta model is defined is called Ecore. In other words, the
meta model is the Ecore model of your language. Ecore an essential part of EMF. Your
models instantiate the meta model, and your meta model instantiates Ecore. To put an
end to this recursion, Ecore is defined in itself (an instance of itself).

The meta model defines the types of the semantic nodes as Ecore EClasses. EClasses
are shown as boxes in the meta mode diagram, so in our example, Model, Type, Simple-
Type, Entity, and Property are EClasses. An EClass can inherit from other EClasses.
Multiple inheritance is allowed in Ecore, but of course cycles are forbidden.

EClasses can have EAttributes for their simple properties. These are shown inside
the EClasses nodes. The example contains two EAttributes name and one EAttribute
isMulti. The domain of values for an EAttribute is defined by its EDataType. Ecore
ships with some predefined EDataTypes, which essentially refer to Java primitive types
and other immutable classes like String. To make a distinction from the Java types, the
EDataTypes are prefixed with an E. In our example, that is EString and EBoolean.

In contrast to EAttributes, EReferences point to other EClasses. The containment flag
indicates whether an EReference is a containment reference or a cross-reference. In the
diagram, references are edges and containment references are marked with a diamond.
At the model level, each element can have at most one container, i.e. another element
referring to it with a containment reference. This infers a tree structure to the models,

280

as can be seen in the sample model diagram. On the other hand, cross-references refer to
elements that can be contained anywhere else. In the example, elements and properties
are containment references, while type and extends are cross-references. For reasons of
readability, we skipped the cross-references in the sample model diagram. Note that in
contrast to other parser generators, Xtext creates ASTs with linked cross-references.

Other than associations in UML, EReferences in Ecore are always owned by one EClass
and only navigable in the direction form the owner to the type. Bi-directional associa-
tions must be modeled as two references, being eOpposite of each other and owned by
either end of the associations.

The superclass of EAttributes and EReferences is EStructuralFeature and allows to
define a name and a cardinality by setting lowerBound and upperBound. Setting the
latter to -1 means ’unbounded’.

The common super type of EDataType and EClass is EClassifier. An EPackage acts
as a namespace and container of EClassifiers.

We have summarized these most relevant concepts of Ecore in the following diagram:

Figure 21.3.: Ecore concepts

281

21.2. EMF Code Generation

EMF also ships with a code generator that generates Java classes from your Ecore model.
The code generators input is the so called EMF generator model. It decorates (references)
the Ecore model and adds additional information for the Ecore -> Java transformation.
Xtext will automatically generate a generator model with reasonable defaults for all
generated metamodels, and run the EMF code generator on them.

The generated classes are based on the EMF runtime library, which offers a lot of
infrastructure and tools to work with your models, such as persistence, reflection, refer-
ential integrity, lazy loading etc.

Among other things, the code generator will generate

• A Java interface and a Java class for each EClassifier in your Ecore model. By
default, all classes will implement the interface EObject, linking a lot of runtime
functionality.

• A Java bean property for each EStructuralFeature (member variable, accessor
methods)

• A package interface and class, holding singleton objects for all elements of your
Ecore model, allowing reflection. EPackages are also registered to the EPackage.
Registry to be usable at runtime.

• A factory interface and class for creating instances

• An abstract switch class implementing a visitor pattern to avoid if-instanceof-
cascades in your code.

21.3. XtextResource Implementation

Xtext provides an implementation of EMF’s resource, the XtextResource. This does
not only encapsulate the parser that converts text to an EMF model but also the seri-
alizer (§16.9) working the opposite direction. That way, an Xtext model just looks like
any other Ecore-based model from the outside, making it amenable for the use by other
EMF based tools. In fact, the Xpand templates in the generator plug-in created by the
Xtext wizard do not make any assumption on the fact that the model is described in
Xtext, and they would work fine with any model based on the same Ecore model of the
language. So in the ideal case, you can switch the serialization format of your models to
your self-defined DSL by just replacing the resource implementation used by your other
modeling tools.

The generator fragment ResourceFactoryFragment registers a factory for the XtextResource
to EMF’s resource factory registry, such that all tools using the default mechanism to

resolve a resource implementation will automatically get that resource implementation.
Using a self-defined textual syntax as the primary storage format has a number of

advantages over the default XMI serialization, e.g.

282

• You can use well-known and easy-to-use tools and techniques for manipulation,
such as text editors, regular expressions, or stream editors.

• You can use the same tools for version control as you use for source code. Com-
paring and merging is performed in a syntax the developer is familiar with.

• It is impossible to break the model such that it cannot be reopened in the editor
again.

• Models can be fixed using the same tools, even if they have become incompatible
with a new version of the Ecore model.

Xtext targets easy to use and naturally feeling languages. It focuses on the lexical
aspects of a language a bit more than on the semantic ones. As a consequence, a
referenced Ecore model can contain more concepts than are actually covered by the
Xtext grammar. As a result, not everything that is possibly expressed in the EMF
model can be serialized back into a textual representation with regards to the grammar.
So if you want to use Xtext to serialize your models as described above, it is good to
have a couple of things in mind:

• Prefer optional rule calls (cardinality ? or *) to mandatory ones (cardinality + or
default), such that missing references will not obstruct serialization.

283

• You should not use an Xtext-Editor on the same model instance as a self-
synchronizing other editor, e.g. a canonical GMF editor (see subsection 21.4.1
for details). The Xtext parser replaces re-parsed subtrees of the AST rather than
modifying it, so elements will become stale. As the Xtext editor continuously re-
parses the model on changes, this will happen rather often. It is safer to synchronize
editors more loosely, e.g. on file changes.

• Implement an IFragmentProvider (how-to (§16.11)) to make the XtextResource
return stable fragments for its contained elements, e.g. based on composite names
rather than order of appearance.

• Implement an IQualifiedNameProvider and an IScopeProvider (how-to (§16.7)) to
make the names of all linkable elements in cross-references unique.

• Provide an IFormatter (how-to (§16.10)) to improve the readability of the generated
textual models.

• Register an IReferableElementsUnloader to turn deleted/replaced model elements
into EMF proxies. Design the rest of your application such that it does never keep
references to EObjects or to cope with proxies. That will improve the stability of
your application drastically.

• Xtext will register an EMF Resource.Factory, so resources with the file extension
you entered when generating the Xtext plug-ins will be automatically loaded in an
XtextResource when you use EMF’s ResourceSet API to load it.

21.4. Integration with GMF Editors

We do no longer maintain the GMF example code and have removed it from our in-
stallation. You can still access the last version of the source code form our source code
repository.

The Graphical Modeling Framework (GMF) allows to create graphical diagram editors
for Ecore models. To illustrate how to build a GMF on top of an XtextResource we have
provided an example. You must have the Helios version 2.3 of GMF Notation, Runtime
and Tooling and their dependencies installed in your workbench to run the example.
With other versions of GMF it might work to regenerate the diagram code.

The example consists of a number of plug-ins

284

http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://www.eclipse.org/modeling/gmp/?project=gmf

Plug-in Framework Purpose Contents
o.e.x.example.gmf Xtext Xtext runtime plug-in Grammar, derived

metamodel and lan-
guage infrastructure

o.e.x.e.g.ui Xtext Xtext UI plug-in Xtext editor and ser-
vices

o.e.x.e.g.edit EMF EMF.edit plug-in UI services generated
from the metamodel

o.e.x.e.g.models GMF GMF design models Input for the GMF
code generator

o.e.x.e.g.diagram GMF GMF diagram editor Purely generated
from the GMF design
models

o.e.x.e.g.d.extensions GMF and Xtext GMF diagram editor
extensions

Manual extensions to
the generated GMF
editor for integration
with Xtext

o.e.x.gmf.glue Xtext and GMF Glue code Generic code to inte-
grate Xtext and GMF

We will elaborate the example in three stages.

21.4.1. Stage 1: Make GMF Read and Write the Semantic Model As Text

A diagram editor in GMF by default manages two resources: One for the semantic model,
that is the model we’re actually interested in for further processing. In our example it
is a model representing entities and data types. The second resource holds the notation
model. It represents the shapes you see in the diagram and their graphical properties.
Notation elements reference their semantic counterparts. An entity’s name would be
in the semantic model, while the font to draw it in the diagram would be stored the
notation model. Note that in the integration example we’re only trying to represent the
semantic resource as text.

To keep the semantic model and the diagram model in sync, GMF uses a so called
CanonicalEditPolicy. This component registers as a listener to the semantic model and
automatically updates diagram elements when their semantic counterparts change, are
added or are removed. Some notational information can be derived from the semantic
model by some default mapping, but usually there is a lot of graphical stuff that the
user wants to change to make the diagram look better.

In an Xtext editor, changes in the text are transferred to the underlying XtextResource
by a call to the method XtextResource.update(int, int, String), which will trigger a

partial parsing of the dirty text region and a replacement of the corresponding subtree
in the AST model (semantic model).

Having an Xtext editor and a canonical GMF editor on the same resource can therefore
lead to loss of notational information, as a change in the Xtext editor will remove a
subtree in the AST, causing the CanonicalEditPolicy to remove all notational elements,
even though it was customized by the user. The Xtext rebuilds the AST and the notation

285

model is restored using the default mapping. It is therefore not recommended to let an
Xtext editor and a canonical GMF editor work on the same resource.

In this example, we let each editor use its own memory instance of the model and syn-
chronize on file changes only. Both frameworks already synchronize with external changes
to the edited files out-of-the-box. In the glue code, a org.eclipse.xtext.gmf.glue.concurrency.ConcurrentModificationObserver
warns the user if she tries to edit the same file with two different model editors concur-
rently.

In the example, we started with writing an Xtext grammar for an entity language.
As explained above, we preferred optional assignments and rather covered mandatory
attributes in a validator. Into the bargain, we added some services to improve the EMF
integration, namely a formatter, a fragment provider and an unloader. Then we let Xtext
generate the language infrastructure. From the derived Ecore model and its generator
model, we generated the edit plug-in (needed by GMF) and added some fancier icons.

From the GMF side, we followed the default procedure and created a gmfgraph model,
a gmftool model and a gmfmap model referring to the Ecore model derived form the
Xtext grammar. We changed some settings in the gmfgen model derived by GMF from
the gmfmap model, namely to enable printing and to enable validation and validation
decorators. Then we generated the diagram editor.

Voil?, we now have a diagram editor that reads/writes its semantic model as text.
Also note that the validator from Xtext is already integrated in the diagram editor via
the menu bar.

21.4.2. Stage 2: Calling the Xtext Parser to Parse GMF Labels

GMF’s generated parser for the labels is a bit poor: It will work on attributes only, and
will fail for cross-references, e.g. an attribute’s type. So why not use the Xtext parser
to process the user’s input?

An XtextResource keeps track of it’s concrete syntax representation by means of a
so called node model (see subsection 14.2.4 for a more detailed description). The node
model represents the parse tree and provides information on the offset, length and text
that has been parsed to create a semantic model element. The nodes are attached to
their semantic elements by means of a node adapter.

We can use the node adapter to access the text block that represents an attribute,
and call the Xtext parser to parse the user input. The example code is contained
in org.eclipse.xtext.gmf.glue.edit.part.AntlrParserWrapper. SimplePropertyWrapperEdit-
PartOverride shows how this is integrated into the generated GMF editor. Use the Enti-
tiesEditPartFactoryOverride to instantiate it and the EntitiesEditPartProviderOverride
to create the overridden factory, and register the latter to the extension point. Note that
this is a non-invasive way to extend generated GMF editors.

When you test the editor, you will note that the node model will be corrupt after
editing a few labels. This is because the node model is only updated by the Xtext parser
and not by the serializer. So we need a way to automatically call the (partial) parser
every time the semantic model is changed. You will find the required classes in the
package org.eclipse.xtext.gmf.glue.editingdomain. To activate node model reconciling,
you have to add a line

286

XtextNodeModelReconciler.adapt(editingDomain);

in the method createEditingDomain() of the generated EntitiesDocumentProvider. To
avoid changing the generated code, you can modify the code generation template for that
class by setting

Dynamic Templates -> true
Template Directory = "org.eclipse.xtext.example.gmf.models/templates"

in the GenEditorGenerator and

Required Plugins -> "org.eclipse.xtext.gmf.glue"

in the GenPlugin element of the gmfgen before generating the diagram editor anew.

21.4.3. Stage 3: A Popup Xtext Editor (experimental)

SimplePropertyPopupXtextEditorEditPartOverride demonstrates how to spawn an Xtext
editor to edit a model element. The editor pops up in its control and shows only the
section of the selected element. It is a fully fledged Xtext editor, with support of vali-
dation, code assist and syntax highlighting. The edited text is only transferred back to
the model if it does not have any errors.

Note that there still are synchronization issues, that’s why we keep this one marked
as experimental.

287

Part IV.

Appendix

288

22. Migrating from Xtext 1.0.x to 2.0

Most of the tasks when migrating to Xtext 2.0 can be automated. Some changes will
be necessary in the manually written code where you have to carefully verify that your
implementation is still working with Xtext 2.0. A reliable test-suite helps a lot.

The grammar language is fully backward compatible. You should not have to apply
any changes in the primary artifact. However, we introduced some additional validation
rules that mark inconsistencies in your grammar. If you get any warnings in the grammar
editor, it should be straight forward to fix them.

Tip: You’ll learn something about the new features if you compare a freshly created
Xtext project based on 1.0.x with a new Xtext project based on 2.0. Especially the new
fragments in the workflow are a good indicator for useful new features.

22.1. Take the Shortcut

If you haven’t made too many customizations to the generated defaults and if you’re not
referencing many classes of your Xtext language from the outside, you might consider
starting with a new Xtext project, copying your grammar and then manually restoring
your changes step by step. If that does not work for you, go on reading!

22.2. Migrating Step By Step

Before you start the migration to Xtext 2.0, you should make sure that no old plug-ins
are in your target platform.

Tip: The following steps try to use the Eclipse compiler to spot any source-incompatible
changes while fixing them with only a few well described user actions. Doing these steps
in another order causes most likely a higher effort.

22.2.1. Update the Plug-in Dependencies and Import Statements

You should update the version constraints of the plug-in dependencies in your manifest
files from version 1.0.x to 2.0 if you specified any concrete versions. Also the constraint
of org.antlr.runtime must be updated from [3.0.0,3.0.2) to 3.2.0.

The next step is to fix the import statements in your classes to match the refactored
naming scheme in Xtext. This fixes most of the problems in the manually written code.

22.2.2. Introduction of the Qualified Name

With Xtext 2.0 an object for dealing with qualified names has been introduced: QualifiedName
. The qualified name is now split into segments which can be queried. The lower-case ver-

289

sion of the qualified name is cached so that the performance of case insensitive languages
is improved. The signature of the methods used by the DefaultDeclarativeQualifiedNameProvider
changed to QualifiedName qualifiedName(Object).

The IQualifiedNameConverter converts qualified names from/to their String repre-
sentation. This is also where you specify the separator and wildcard strings. If you
already know the segments of a qualified name, you can also create it using Qualified-
Name.create(String ...).

QualifiedName is the new type of the name properties in the IEObjectDescription.
So if you have customized indexing, e.g. implemented your own IResourceDescription.
Manager, you will have to create qualified names instead of strings. IEObjectDescrip-
tions are also used in other places such as scoping (§16.7), linking (§16.6), serializa-
tion (§16.9), content assist (§17.2)...

Furthermore, the method IQualifiedNameProvider.getQualifiedName(EObject) has been
renamed to getFullyQualifiedName(EObject).

22.2.3. Changes in the index and in find references

In Xtext 1.0.x the interfaces IResourceDescriptions, IResourceDescription and IContainer
have several methods to query them for contained elements. In Xtext 2.0 there is a com-
mon interface ISelectable for this use case which is extended by the interfaces mentioned
above. For further details have a look at the interface ISelectable .

The default indexing for Xtext resources as it is defined in DefaultResourceDescriptionManager
has changed. Only cross-references pointing to elements outside the current resource

are indexed. Furthermore, the DefaultResourceDescriptionManager can now be easier
customized with an IDefaultResourceDescriptionStrategy.

For Ecore files only EPackages, EClassifiers and EStructuralFeatures are indexed, each
with both, the nsURI and the name of the containing EPackage in their qualified name.

There is a new interface to find references to Xtext elements: IReferenceFinder. It
allows to distinguish searches in the local Resource from global index searches. Local
searches will yield all local cross references independent of the indexing strategy.

22.2.4. Rewritten Node Model

To reduce memory consumption, the node model has been redesigned in Xtext 2.0. We
no longer use EMF, but a chained list of compressed nodes instead.

The package org.eclipse.xtext.nodemodel now contains the relevant interfaces to pro-
gram against. The new interfaces follow the naming convention of other types in the
framework. They are called INode, ICompositeNode and ILeafNode. That way, most of
the migration will be done by prefixing the old names with an I and use the organize
imports tool. Please make sure not to program against concrete or abstract classes.

If you used the node model a lot, you should have a closer look at the new APIs.
The EObject API is no longer available on the nodes. Instead, you we offer a cou-
ple of Iterables for traversing the tree. Where appropriate, helper methods of the
former ParseTreeUtil and NodeUtil have become members of the nodes, e.g. NodeU-
til.getAllContents(AbstractNode) has become INode.getAsTreeIterable() The remaining
methods have been converted and moved to the new NodeModelUtils.

290

22.2.5. New Outline

The outline view has been completely re-implemented. To use the new one remove the
following fragments from your workflow

fragment = outline.TransformerFragment{}
fragment = outline.OutlineNodeAdapterFactoryFragment{}

and add

fragment = outline.OutlineTreeProviderFragment {}

After generating a new class named MyDslOutlineTreeProvider is generated. The
API changed completely. For that reason you should take a closer look at the chapter
on the outline (§17.5). The old classes named MyDslTransformer and MyDslOutlineN-
odeAdapterFactory have become obsolete and should be removed after having migrated
your code to the new API.

22.2.6. AutoEditStrategy

In Xtext 1.0.x your AutoEditStrategy extends the class DefaultAutoEditStrategy which
implements the interface IAutoEditStrategy. In Xtext 2.0 the DefaultAutoEditStrategyProvider
should be extended instead. The only thing you have to do is to change the super-

class from DefaultAutoEditStrategy to DefaultAutoEditStrategyProvider. The interface
AbstractEditStrategyProvider.IEditStrategyAcceptor changed from accept(IAutoEditStrategy)
to accept(IAutoEditStrategy, String). The last parameter represents the contentType of
the document. Constants could be found in the IDocument and in the TerminalsTokenTypeToPartitionMapper
.

As a example the configure method could look like this one:

@Override
protected void configure(IEditStrategyAcceptor acceptor) {
super.configure(acceptor);
acceptor.accept(new YourAutoEditStrategy(),

IDocument.DEFAULT_CONTENT_TYPE);
}

The last thing you have to do is to change the binding of the IAutoEditStrategy in the
MyDslUIModule from

291

public Class<? extends IAutoEditStrategy> bindIAutoEditStrategy()

to

public Class<? extends AbstractEditStrategyProvider>
bindAbstractEditStrategyProvider() { .. }

22.2.7. Other Noteworthy API Changes

The src folders are generated once, so existing code will not be overwritten but has to
be updated manually.

You will face a couple of compilation problems due to changes in the API. Here’s a
list of the most prominent changes. It is usually only necessary to change your code, if
you face any compilation problems.

• In the interface IGlobalScopeProvider the method getScope(EObject,EReference)
has been removed. Use getScope(Resource, EReference, Predi-
cate<IEObjectDescription>) instead.

• The interface IAntlrParser has been removed. Use the IParser instead.

• The methods error(..) and warning(..) in the AbstractDeclarativeValidator used
to accept integer constants representing the EStructuralFeature which caused the
issues. These integer parameters were replaced by the feature itself, e.g. from
error(String, Integer) to error(String, EStructuralFeature). Use the generated
EPackage.Literals to access the EStructuralFeatures.

• The enum DiagnosticSeverity has been renamed to Severity.

• The class TextLocation has been replaced by the interface ITextRegion with an
immutable implementation TextRegion.

• In Xtext 1.0.x the class EObjectAtOffsetHelper provided several static methods
to resolve elements. In Xtext 2.0 these methods aren’t static anymore. For that
reason you could create an instance of this class or let Guice do the job for you:

@Inject private EObjectAtOffsetHelper eObjectAtOffsetHelper;

• The method EObjectAtOffsetHelper.resolveElementAt(XtextResource, int, Text-
Location) changed to resolveElementAt(XtextResource, int). You have to use the
ILocationInFileProvider to compute the TextRegion.

292

• The ILocationInFileProvider now offers methods getSignificantTextRegion() and
getFullTextRegion() to make the distinction between the name and the full region
of an element. The old getLocation() method was removed.

If you experience further problems, please refer to the newsgroup.

22.3. Now go for then new features

After migrating, some of the new features in Xtext 2.0 will be automatically available.
Others require further configuration. We recommend exploring

• Xbase,

• the new Xtend,

• rename refactorings

• the compare view,

• rich hovers,

• the Xtext syntax graph,

• support for syntactic predicates (§14.2.8),

• the generated debug grammar,

• terminal fragments (§14.2.3),

• document partitions and auto edit

• the redesigned outline view (§17.5),

• and the quick fixes for the Xtext grammar language (§17.3).

293

http://www.eclipse.org/forums/index.php?t=thread&frm_id=27

23. Migrating from Xtext 0.7.x to 1.0

For the sake of completeness, here is how you migrate from Xtext 0.7.x to Xtext 1.0, so
you might do a migration to 2.0 in two steps. Nevertheless, there have been so many new
features and changes that it probably makes more sense to just copy the grammar and
start with a new Xtext 2.0 project. The grammar language is fully backward compatible.

23.1. Migrating Step By Step

Once again, you should make sure that no old plug-ins are in your target platform. Some
plug-ins from Xtext 0.7.x have been merged and do no longer exist.

Tip: The following steps try to use the Eclipse compiler to spot any source-incompatible
changes while fixing them with only a few well described user actions. Doing these steps
in another order causes most likely a higher effort.

23.1.1. Update the Plug-in Dependencies and Import Statements

You should update the constraints from version 0.7.x to [1.0.0,2.0.0) in your mani-
fest files if you specified any concrete versions. Make sure that your dsl.ui -projects do
not refer to the plug-in org.eclipse.xtext.ui.common or org.eclipse.xtext.ui.core but to
org.eclipse.xtext.ui instead. The arguably easiest way is a global text-based search and
replace across the manifest files. The bundle org.eclipse.xtext.log4j is obsolete as well.
The generator will create import-package entries in the manifests later on.

The next step is to fix the import statements in your classes to match the refactored
naming scheme in Xtext. Perform a global search for import org.eclipse.xtext.ui.common.
and org.eclipse.xtext.ui.core. and replace the matches with import org.eclipse.xtext.ui..
This fixes most of the problems in the manually written code.

23.1.2. Rename the Packages in the dsl.ui-Plug-in

We changed the naming pattern for artifacts in the dsl.ui -plug-in to match the OSGi
conventions. The easiest way to update your existing projects is to apply a ”Rename
Package” refactoring on the packages in the src- and src-gen folder before you re-run the
workflow that regenerates your language. Make sure you ticked ”Rename subpackages”
in the rename dialog. It is error-prone to enable the search in non-Java files as this
will perform incompatible changes in the manifest files. Furthermore, it is important to
perform the rename operation in the src-gen folder, too. This ensures that the references
in your manually written code are properly updated.

294

23.1.3. Update the Workflow

The JavaScopingFragment does no longer exist. It has been superseded by the ImportURIScopingFragment
in combination with the SimpleNamesFragment. Please replace

<fragment class=
"org.eclipse.xtext.generator.scoping.JavaScopingFragment"/>

with

<fragment class=
"org.eclipse.xtext.generator.scoping.ImportURIScopingFragment"/>

<fragment class=
"org.eclipse.xtext.generator.exporting.SimpleNamesFragment"/>

The PackratParserFragment has been abandoned as well. It is save to remove the
reference to that one if it is activated in your workflow. After you’ve changed your
workflow, it should be possible to regenerate your language without any errors in the
console. It is ok to have compilation errors prior to executing the workflow.

23.1.4. MANIFEST.MF and plugin.xml

The previous rename package refactoring updated most of the entries in the MANI-
FEST.MF and and some entries in the plugin.xml. Others have to be fixed manually.
The Eclipse compiler will point to many of the remaining problems in the manifest files
but it is unlikely that it will spot the erroneous references in the plugin.xml.

• In the generated UI plug-in’s MANIFEST.MF, remove the package exports of no
longer existing packages and make sure the bundle activator points to the newly
generated one (with .ui. in its package name).

• It was already mentioned that the plug-ins org.eclipse.xtext.ui.core and
org.eclipse.xtext.ui.common have been merged into a new single plug-in
org.eclipse.xtext.ui. The same happened to the respective Java packages. Change
eventually remaining bundle-dependencies in all manifests.

• The plug-in org.eclipse.xtext.log4j no longer exists. We use a package import of
org.apache.log4j instead. Also remove the buddy registration.

295

• Due to renamed packages, you have to fix all references to classes therein in the plu-
gin.xml. A comparison with the plugin.xml gen will be a great help. If you haven’t
added a lot manually, consider merging these into the generated version instead of
going the other way around. Note that warnings in the plugin.xml can be consid-
ered to be real errors most of the time. Make sure the MyDslExecutableExtension-
Factory has the .ui. package prefix. Classes from org.eclipse.xtext.ui.common and
org.eclipse.xtext.ui.core are now usually somewhere in org.eclipse.xtext.ui. They
are also referenced by the MyDslExecutableExtensionFactory and thus not covered
by the validation of the plugin.xml.

• A number of new features are being registered in the plugin.xml, e.g. Find refer-
ences, Quick Outline, and Quick Fixes. You can enable them by manually copying
the respective entries from plugin.xml gen to plugin.xml.

• To run MWE2 workflows later on, you must change the plug-in dependencies from
org.eclipse.emf.mwe.core to org.eclipse.emf.mwe2.launch in your manifest. Op-
tional resolution is fine.

23.1.5. Noteworthy API Changes

The src folders are generated once, so existing code will not be overwritten but has to
be updated manually. At least one new class has appeared in your src-folder of the
ui plug-in. there will now be a MyDslStandaloneSetup inheriting form the generated
MyDslStandaloneSetupGenerated to allow customization.

You will face a couple of compilation problems due to changes in the API. Here’s a
list of the most prominent changes. It is usually only necessary to change your code, if
you face any compilation problems.

• The method IScopeProvider.getScope(EObject,EClass) has been removed. Use
getScope(EObject,EReference) instead.

• Renamed DefaultScopeProvider to SimpleLocalScopeProvider. There have been
further significant changes in the scoping API that allow for optimized implemen-
tations. Consult the section on scoping (§16.7) for details.

• The return type of AbstractInjectableValidator.getEPackages() was changed from
List<? extends EPackage> to List<EPackage>.

• The parser interfaces now use Reader instead of InputStream to explicitly address
encoding. Have a look at the section on encoding (§16.12) for details.

• The handling of ILabelProvider in various contexts has been refactored.
The former base class DefaultLabelProvider no longer exists. Use the
DefaultEObjectLabelProvider instead. See the section on label providers (§17.1)
for details.

• We have introduced a couple of new packages to better separate concerns. Most
classes should be easy to relocate.

296

• The runtime and UI modules have separate base classes DefaultRuntimeModule
and DefaultUiModule now. We use Guice’s module overrides to combine them
with the newly introduced SharedModule. You have to add a constructor the your
MyDslUiModule that takes an AbstractUIPlugin as argument and pass that one
to the super constructor. Tip: There is an Eclipse quick fix available for that one.

• The interfaces ILexicalHighlightigConfiguration and ISemanticHighlightingConfig-
uration have been merged into IHighlightingConfiguration.

• The DefaultTemplateProposalProvider takes an additional, injectable constructor
parameter of type ContextTypeIdHelper.

• The HyperlinkHelper uses field injection instead of constructor injection. The
method createHyperlinksByOffset(..) should be overridden instead of the former
findCrossLinkedEObject.

• The API to skip a node in the outline has changed. Instead of returning the
HIDDEN NODE you’ll have to implement boolean consumeNode(MyType) and
return false.
Note: The outline has been re-implemented in Xtext 2.0.

• The Readonly*Storage implementations have been removed. There is a new API
to open editors for objects with a given URI. Please use the IURIEditorOpener to
create an editor or the IStorage2UriMapper to obtain an IStorage for a given URI.

• The interfaces IStateAccess and IEObjectHandle have been moved along with the
IUnitOfWork to the package org.eclipse.xtext.util.concurrent.
Note: IStateAccess was split into IReadAccess and IWriteAccess in Xtext 2.0.

• The ValidationJobFactory is gone. Please implement a custom IResourceValidator
instead.

• The grammar elements Alternatives and Group have a new common super type
CompoundElement. The methods getGroups() and getTokens() have been refac-
tored to getElements().

• Completion proposals take a StyledString instead of a plain string as display string.

• The AbstractLabelProvider does no longer expose its IImageHelper. Use convert-
ToImage instead or inject your own IImageHelper.

• The implementation-classes from org.eclipse.xtext.index were superseded by
the builder infrastructure. Use the QualifiedNamesFragment and the
ImportNamespacesScopingFragment instead of the ImportedNamespacesScop-
ingFragment. Please refer to the section about the builder infrastructure (§16.7.1)
for details.

• All the Xtend-based fragments were removed.

• ILinkingService.getLinkText was removed. Have a look at the LinkingHelper and
the CrossReferenceSerializer if you relied on this method.

297

• The SerializerUtil was renamed to Serializer . There were other heavy refactorings
that involved the serializer and its components like e.g. the ITransientValueService
but it should be pretty straight forward to migrate existing client code.

• The method-signatures of the IFragmentProvider have changed. The documenta-
tion (§16.11) will give a clue on how to update existing implementations.

• Some static methods were removed from utility classes such as EcoreUtil2 and
ParsetreeUtil in favor of more sophisticated implementations.

298

List of External Links

http://code.google.com/p/google-guice/

http://www.ietf.org/rfc/rfc2396.txt

http://eclipse.org/tycho/

http://www.eclipse.org/downloads

http://martinfowler.com/books/dsl.html

http://docs.oracle.com/javase/specs/jls/se7/html/index.html

http://www.eclipse.org/Xtext/documentation.html#Xbase_Expressions_Operators

http://www.xtend-lang.org

http://www.eclipse.org/forums/index.php?t=thread&frm_id=27

http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/

ecore/change/package-summary.html

http://www.eclipse.org/Xtext/documentation.html#cross_reference

documentation.html#highlighting

http://en.wikipedia.org/wiki/Logo_%28programming_language%29

http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5

http://projectlombok.org/features/SneakyThrows.html

http://xtext.itemis.com

http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.

xtext/src/org/eclipse/xtext/Xtext.xtext

http://www.eclipse.org/xtend/documentation.html#extensionMethods

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19

https://github.com/svenefftinge/maven-xtext-example

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.5

http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_

t_imp_code_temp.htm

http://www.eclipse.org/Xtext/download.html

https://github.com/xtext-dev/seven-languages-xtext.git

http://www.eclipse.org/xtend/download.html

documentation.html#xbaseExpressions

http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html

http://www.eclipse.org/xtend/documentation.html#polymorphicDispatch

http://martinfowler.com/bliki/SyntacticNoise.html

http://localhost:8080/guess

http://www.mongodb.org

http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/Xtext/documentation.html

http://www.mongodb.org/downloads

299

http://code.google.com/p/google-guice/
http://www.ietf.org/rfc/rfc2396.txt
http://eclipse.org/tycho/
http://www.eclipse.org/downloads
http://martinfowler.com/books/dsl.html
http://docs.oracle.com/javase/specs/jls/se7/html/index.html
http://www.eclipse.org/Xtext/documentation.html#Xbase_Expressions_Operators
http://www.xtend-lang.org
http://www.eclipse.org/forums/index.php?t=thread&frm_id=27
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/change/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/change/package-summary.html
http://www.eclipse.org/Xtext/documentation.html#cross_reference
documentation.html#highlighting
http://en.wikipedia.org/wiki/Logo_%28programming_language%29
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5
http://projectlombok.org/features/SneakyThrows.html
http://xtext.itemis.com
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/plugins/org.eclipse.xtext/src/org/eclipse/xtext/Xtext.xtext
http://www.eclipse.org/xtend/documentation.html#extensionMethods
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19
https://github.com/svenefftinge/maven-xtext-example
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.5
http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_imp_code_temp.htm
http://help.eclipse.org/ganymede/topic/org.eclipse.cdt.doc.user/tasks/cdt_t_imp_code_temp.htm
http://www.eclipse.org/Xtext/download.html
https://github.com/xtext-dev/seven-languages-xtext.git
http://www.eclipse.org/xtend/download.html
documentation.html#xbaseExpressions
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html
http://www.eclipse.org/xtend/documentation.html#polymorphicDispatch
http://martinfowler.com/bliki/SyntacticNoise.html
http://localhost:8080/guess
http://www.mongodb.org
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/documentation.html
http://www.mongodb.org/downloads

http://playframework.org

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.7

http://blogs.itemis.de/stundzig/archives/773

http://blog.efftinge.de/2009/01/xtext-scopes-and-emf-index.html

http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.

xtext.xtext.ui.examples/contents

http://download.eclipse.org/tools/orbit/downloads/

http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html

http://www.xtend-lang.org/documentation

http://www.eclipse.org/modeling/gmp/?project=gmf

http://www.gradle.org/

300

http://playframework.org
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.7
http://blogs.itemis.de/stundzig/archives/773
http://blog.efftinge.de/2009/01/xtext-scopes-and-emf-index.html
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://git.eclipse.org/c/tmf/org.eclipse.xtext.git/tree/examples/org.eclipse.xtext.xtext.ui.examples/contents
http://download.eclipse.org/tools/orbit/downloads/
http://download.oracle.com/javase/1.5.0/docs/guide/intl/encoding.doc.html
http://www.xtend-lang.org/documentation
http://www.eclipse.org/modeling/gmp/?project=gmf
http://www.gradle.org/

	Getting Started
	5 Minutes Tutorial
	Creating A New Xtext Project
	Generating The Language Infrastructure
	Try The Editor
	Conclusion

	15 Minutes Tutorial
	Create A New Xtext Project
	Write Your Own Grammar
	Generate Language Artifacts
	Run the Generated IDE Plug-in
	Second Iteration: Adding Packages and Imports

	15 Minutes Tutorial - Extended
	Writing a Code Generator With Xtend
	Unit Testing the Language
	Creating Custom Validation Rules

	Five simple steps to your JVM language
	Step One: Create A New Xtext Project
	Step Two: Write the Grammar
	Step Three: Generate Language Artifacts
	Step Four: Define the Mapping to JVM Concepts
	Step Five : Try the Editor!

	Seven JVM Languages Built With Xbase
	Introduction
	Write the Grammar
	Map to Java
	CAUTION: This is Provisional API
	Common Requirements
	Getting the Code
	A Short Xtend Primer

	Scripting Language
	Overview
	Running the Example
	Grammar
	Translation to Java

	Build Language
	Overview
	Running the Example
	Grammar
	Translation to Java
	Validation
	Imports
	Operator Overloading
	Run as... Integration

	DSL for MongoDB
	Overview
	Running the Example
	Grammar
	Translation to Java
	Qualified Name Provider
	Validation
	IDE Enhancements

	DSL for Guice
	Overview
	Running the Example
	Grammar
	Translation to Java
	Validation

	Http Routing Language
	Overview
	Running the Example
	Grammar
	Translation to Java

	Template Language
	Overview
	Running the Example
	Grammar
	Translation to Java
	Extending the Compiler
	Type Computation
	Value Converter
	Content Assist
	Syntax Highlighting

	Little Tortoise
	Overview
	Running the Example
	Grammar
	Translation to Java
	Interpreter
	Literal Classes

	Reference Documentation
	Overview
	What is Xtext?
	How Does It Work?
	Xtext is Highly Configurable
	Who Uses Xtext?
	Who is Behind Xtext?
	What is a Domain-Specific Language

	The Grammar Language
	A First Example
	The Syntax
	Language Declaration
	EPackage Declarations
	Rules
	Parser Rules
	Hidden Terminal Symbols
	Data Type Rules
	Enum Rules
	Syntactic Predicates

	Ecore Model Inference
	Type and Package Generation
	Feature and Type Hierarchy Generation
	Enum Literal Generation
	Feature Normalization
	Error Conditions

	Grammar Mixins
	Common Terminals

	Configuration
	The Language Generator
	A Short Introduction to MWE2
	General Architecture
	Standard Generator Fragments

	Dependency Injection in Xtext with Google Guice
	The Module API
	Obtaining an Injector

	Continuous Integration (with Maven)
	An overview of the example projects
	Building an Xtext language with Maven and Tycho
	Integration in Standard Maven Builds

	Runtime Concepts
	Runtime Setup (ISetup)
	Setup within Eclipse-Equinox (OSGi)
	Logging
	Code Generation / Compilation
	IGenerator
	Output Configurations

	Validation
	Automatic Validation
	Custom Validation
	Validating Manually
	Test Validators

	Linking
	Declaration of Cross-links
	Default Runtime Behavior (Lazy Linking)

	Scoping
	Global Scopes and Resource Descriptions
	Local Scoping
	Imported Namespace-Aware Scoping

	Value Converter
	Serialization
	The Contract
	Roles of the Semantic Model and the Node Model During Serialization
	Parse Tree Constructor
	Options
	Preserving Comments from the Node Model
	Transient Values
	Unassigned Text
	Cross-Reference Serializer
	Merge White Space
	Token Stream

	Formatting (Pretty Printing)
	General FormattingConfig Settings
	FormattingConfig Instructions
	Grammar Element Finders

	Fragment Provider (Referencing Xtext Models From Other EMF Artifacts)
	Encoding in Xtext
	Encoding at Language Design Time
	Encoding at Language Runtime
	Encoding of an XtextResource
	Encoding in New Model Projects
	Encoding of Xtext Source Code

	Unit Testing the Language
	Creating a simple test class
	Writing a parser test
	How to write tests that includes multiple different languages

	IDE Concepts
	Label Provider
	Label Providers For EObjects
	Label Providers For Index Entries

	Content Assist
	Quick Fixes
	Quick Fixes for Linking Errors and Syntax Errors

	Template Proposals
	Cross Reference Template Variable Resolver
	Enumeration Template Variable Resolver

	Outline View
	Influencing the outline structure
	Styling the outline
	Filtering actions
	Sorting actions
	Quick Outline

	Hyperlinking
	Location Provider
	Customizing Available Hyperlinks

	Syntax Coloring
	Lexical Highlighting
	Semantic Highlighting

	Rename Refactoring
	Customizing
	Rename Participants

	Xtext and Java
	Plug-in Setup
	Referring to Java Elements using JVM Types
	Customization Points

	Referring to Java Types Using Xbase
	Inferring a JVM Model
	Linking and Indexing

	Using Xbase Expressions
	Making Your Grammar Refer To Xbase
	Using the Xbase Interpreter

	Xbase Language Reference
	Lexical Syntax
	Types
	Expressions
	Extension Methods

	MWE2
	Examples
	The Simplest Workflow
	A Simple Transformation
	A Stop-Watch

	Language Reference
	Mapping to Java Classes
	Module
	Properties
	Mandatory Properties
	Named Components
	Auto Injection

	Syntax Reference
	Module
	Property
	Component
	String Literals
	Boolean Literals
	References

	Typical Language Configurations
	Case Insensitive Languages
	Languages Independent of JDT
	Parsing Expressions with Xtext
	Construction of an AST
	Associativity

	Integration with EMF and Other EMF Editors
	Model, Ecore Model, and Ecore
	EMF Code Generation
	XtextResource Implementation
	Integration with GMF Editors
	Stage 1: Make GMF Read and Write the Semantic Model As Text
	Stage 2: Calling the Xtext Parser to Parse GMF Labels
	Stage 3: A Popup Xtext Editor (experimental)

	Appendix
	Migrating from Xtext 1.0.x to 2.0
	Take the Shortcut
	Migrating Step By Step
	Update the Plug-in Dependencies and Import Statements
	Introduction of the Qualified Name
	Changes in the index and in find references
	Rewritten Node Model
	New Outline
	AutoEditStrategy
	Other Noteworthy API Changes

	Now go for then new features

	Migrating from Xtext 0.7.x to 1.0
	Migrating Step By Step
	Update the Plug-in Dependencies and Import Statements
	Rename the Packages in the dsl.ui-Plug-in
	Update the Workflow
	MANIFEST.MF and plugin.xml
	Noteworthy API Changes

