
Object Oriented Design
COSC346

Programming in the large

• One of the main advantages of OOP is its usefulness
for “Programming in the Large”
• i.e., for building large software systems (e.g., Photoshop,

Word, Grand Theft Auto)

• Large development team (from 10s to 100s of people, GTA
IV = 1,000 people + $100M)

• No individual is responsible
for whole project or even
understands all aspects of
project.

• Major challenge is
management of details and
communication between
different subsystems

�2COSC346 Lecture 11, 2018

http://www.hw.ac.uk

Programming in the large

�3COSC346 Lecture 11, 2018

http://keithcu.com/wordpress/?page_id=599

Programming in the large

�4COSC346 Lecture 11, 2018

http://keithcu.com/wordpress/?page_id=599

Overview

1. Design—first understand a problem in terms of
requirements (w/o reference to software)

2. Use Cases—next understand how the system might
be used to perform a particular task

3. Determine Classes—often suggested by use cases

4. CRC Cards—how the classes interact

5. Assigning Responsibilities to classes

6. Sequence Diagrams—determine the dynamic
interaction between classes

7. Class Diagrams—static interaction between classes
�5COSC346 Lecture 11, 2018

O
O

P

1. Design

• Design is the process of understanding the
requirements of a system
• e.g., an ATM must verify identity,

securely store cash, dispense
money, and accept deposits

• For object-oriented software,
we need to determine the
entities (or classes) inherent in
the system

• Candidates often emerge
from how the system is to be
used, which can be described
as a series of use cases

�6COSC346 Lecture 11, 2018

O
O

P

2. Use cases

• A use case is a narrative that describes the
sequence of events of an actor (an external
agent) using a system to complete a single
goal or task
• e.g., a person withdrawing money from ATM

• To describe the use case, we describe the
actions of the actor and how the system
responds
• The actor might be a human user or it might be

another system

�7COSC346 Lecture 11, 2018

O
O

P

2. Use cases

• The use case describes both the desired actions
and what might go wrong (the error behaviours)
in that single task

• To describe a whole system it is often necessary
to include many use cases

• Use cases are described in varying level of detail
• Brief: a few summarising sentences
• Casual: a few paragraphs of text
• Fully dressed: “a formal document based on a

detailed template with fields for various
sections” (Wikipedia)

�8COSC346 Lecture 11, 2018

O
O

P

ATM example

• Here we present a “fully dressed” use case

Use Case
Withdraw money from ATM

Actors
Customer

Brief Description
Customer wishes to withdraw money from an ATM

�9COSC346 Lecture 11, 2018

O
O

P

ATM example

Step-by-Step

1. User inserts card into machine
2. System validates card and requests PIN
3. User enters PIN
4. System validates PIN and awaits action
5. User selects withdraw cash
6. System asks “how much?”
7. User enters amount
8. System check user’s balance and its available cash
9. System dispenses cash
10. System ejects card
11. User takes money and card

�10COSC346 Lecture 11, 2018

O
O

P

ATM example

Errors

• Errors can happen between any two steps
• In all cases respond the same way: back out of

transaction, eject card, restart

• This is like handling optionals

�11COSC346 Lecture 11, 2018

O
O

P

ATM example

• Use case diagrams show the actors, their actions,
and how they interact

�12COSC346 Lecture 11, 2018

O
O

P

3. Determine classes

• From our analysis, we need to determine the
classes in the system

• Choose a subset of use cases (could be just
1) and try to determine classes and
interactions necessary to realise that use
case:
•Could nouns be classes?

•Could verbs be actions (methods)?

�13COSC346 Lecture 11, 2018

O
O

P

3. Determine
classes

�14COSC346 Lecture 11, 2018

O
O

P

4. CRC card

• A CRC card is a “Class Responsibility
Collaboration” card

• On a small paper CRC card write:
• The class name

• Its super- and sub-classes (if any)

• The class responsibilities

• The names of other classes communicating with
this class

• The author of the class

�15COSC346 Lecture 11, 2018

O
O

P

4. CRC card

• Lay out the CRC cards and simulate the running
of the program as a conversation between them

• Cards send messages to each other
• Objects invoke method on each other

�16COSC346 Lecture 11, 2018

O
O

P

5. Assigning responsibilities

• Two types of responsibilities for an object:
• Knowing (state)
• about data

• about related objects

• Knowledge is usually stored in instance variables

• Doing (behaviour)
• Deriving or calculating something

• Knowing which other objects can do things

• How to coordinate with other object that do things

• These abilities are usually performed as methods

�17COSC346 Lecture 11, 2018

O
O

P

5. Assigning responsibilities

• Try to assign responsibilities that minimise
coupling and maximise cohesion
• Coupling—Assign responsibilities that lower

dependency of objects on each other

• Cohesion—Assign responsibilities that increase
the independence of an object

�18COSC346 Lecture 11, 2018

Image by Steve Easterbrook, University of Toronto

O
O

P

Coupling and cohesion

• You want low coupling and high cohesion. How
do you accomplish this goal?
• Law of Demeter: talk to your friends, but not your

friend’s friends
• Avoid compound messages

• Respect encapsulation: don’t ask for personal details
• Don’t rely on internal details of another object

• Avoid code duplication: don’t use the same logic in
multiple places

• Group code by function: Try to give each class a
well-defined task

�19COSC346 Lecture 11, 2018

O
O

P

Code smell

• Code smell refers to signs that your code might need
reorganisation
• Divergent Changes: one class requires multiple changes for

different reasons (low cohesion)

• Feature Envy: one class is too interested in workings of
another class (high coupling)

• Shotgun Surgery: changing one class requires changes in
other classes (high coupling)

• Other general code smells:
• Large classes, large methods, long parameter lists

• Unclear naming, too few comments, too many comments

• Uncalled code, overly general code

• Many others …

�20COSC346 Lecture 11, 2018

O
O

P

6. Sequence diagrams

• Sequence diagrams illustrate how objects interact
(via calls) to fulfil tasks
• Time goes from top to bottom

�21COSC346 Lecture 11, 2018

O
O

P

7. Class diagrams

• A class diagram (AKA an object diagram)
illustrates how a program’s classes interact
• They are useful for design when a program is

actually being implemented

• Class diagrams include details about:
•Classes, associations, and attributes;
• Interfaces and operations;
•methods;
•attribute type information;
•dependencies

�22COSC346 Lecture 11, 2018

O
O

P

7. Class
diagrams

�23COSC346 Lecture 11, 2018

O
O

P

7. Class diagrams

�24COSC346 Lecture 11, 2018

O
O

P

Conclusion

• Design diagrams are useful for planning out
your object-oriented project
• Think of them like as a way to organise your

thoughts before you start coding
• Like an outline of an essay

• Design diagrams include:
• use case diagrams

• CRC cards
• sequence diagrams
• class (or object) diagrams

�25COSC346 Lecture 11, 2018

O
O

P

Unofficial design guide from Lech

Preliminary stage:
• Describe functionality and requirements—WRITE IT DOWN
• How are you going to test the software?
• How are you going to maintain it?
• How are you going to support it?
• How are you going to distribute it?

Development stage:
• Decide on the representation—what is the underlying

model?
• Implement all the interface logic with empty functions/

methods
• Write test scripts
• Fill in the code for implementation—keep testing as you

develop

�26COSC346 Lecture 11, 2018

Design Pattern - Memento

• Capture an objects internal state without
exposing internal structure
• maintain encapsulation

• Undo/Redo
• e.g. Editor undo action, ctrl-z

• Three components
• memento—basic state storage/retrieval

• originator—creates new mementos
• caretaker—holds all mementos

!27COSC346 Lecture 11, 2018

Memento Example

!28COSC346 Lecture 11, 2018

// Memento
typealias Memento = NSDictionary

// Originator
protocol MementoConvertible {
 var memento: Memento { get }
 init?(memento: Memento)
}
struct GameState: MementoConvertible{
 var chapter: String

 init(chapter: String) {
 self.chapter = chapter
 }

 init?(memento: Memento) {
 guard let mementoChapter =

memento["chapter"] as? String else {
 return nil
 }
 chapter = mementoChapter
 }

 var memento: Memento {
 return ["chapter": chapter]
 }
}

// Caretaker
enum CheckPoint {
 static func save(_ state: MementoConvertible,

saveName: String) {

 let defaults = UserDefaults.standard
 defaults.set(state.memento, forKey: saveName)
 defaults.synchronize()
 }

 static func restore(saveName: String) -> Memento? {
 let defaults = UserDefaults.standard
 return defaults.object(forKey: saveName) as? Memento
 }
}

var gameState = GameState(chapter: "Chapter 1")

gameState.chapter = "Chapter 2"
CheckPoint.save(gameState, saveName: "gameState1")

gameState.chapter = "Chapter 3"
CheckPoint.save(gameState, saveName: "gameState2")

if let memento = CheckPoint.restore(saveName: "gameState1") {
 let finalState = GameState(memento: memento)
 print(finalState ?? "no state :(")
}

To
ol

m
ak

er
Bu

ild
er

To
ol

m
ak

er

Memento in the real world?

!29COSC346 Lecture 11, 2018

Summary?

!30COSC346 Lecture 11, 2018

