Object Oriented Design
Patterns

COSC346

Design Patterns

* Reusable solution fo a commonly
occurring problem

* Lies between a paradigm and an oo
. Ralph iohngon
algorithm A

* First book appeared in 1994

COSC346 Lecture 12,2018

Design Patterns
Elements of Regsable
Object4)‘r'wnlédw(\\'m‘hf‘_'

The "Gang of Four" (GoF)

Language features make some
patterns unnecessary

Can unnecessarily increase
complexity

USE WITH CAUTION!

LG

Three types of patterns:
Creational, Behavioural,
Structural

Why design patterns?

* Knowing OOP basics does not automatically make
you a good OOP designer

* Patfterns show you how to build systems with good
OO design qualities
* Patterns don't give you code, but
general solutions to design problems

* Patterns aren’t invented, they're
discovered

* Most patterns and principles address
issues of change in software

* Most patterns allow some part of a

system to vary independently of From Head First Design
other parts patterns, O'Reilly Media

COSC346 Lecture 12, 2017 3

OVERVIEW DOWNLOAD DOCUMENTATION NEWS COMMUNITY CODE ABOUT ¥ DONATE

Django makes it easier to build better Web
apps more quickly and with less code.

Get started with Django

Django is a high-level Python Web framework that encourages rapid development and clean, DJANGO DOCUMENTATION >

pragmatic design. Built by experienced developers, it takes care of much of the hassle of Web
Support Django!

Denis Kataev donated to the Django
Software Foundation to support Django
development. Donate today!

Django was designed to help developers take applications from concept to Latest news

development, so you can focus on writing your app without needing to reinvent the wheel. It's free
and open source.

Ridiculously fast.

completion as quickly as possible.

DjangoCon US 2018 Schedule Is Live
DjangoCon US is coming up soon: the schedule is live, tickets
Reassuringly secure. are on sale, and the hotel rate expires soon!

Django takes security seriously and helps developers avoid many common Posted by Rebecca Kindschi and Jeff Triplett on August 1

security mistakes. 201

) Django 2.1 released
Exceedingly scalable. _—

@ Some of the busiest sites on the Web leverage Django’s ability to quickly and Django 2.1 has been released!

ﬂexibly scale. Posted by Tim Graham on Augus

COSC346 Lecture 12, 2018 https://www.djangoproject.com

Polls Application Example

* Anyone can view questions and vote

* Admins can add/remove/change questions
and vote options

Dja ngO ad m | n I Strati on WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home > Polls > Questions

Select question to change ADD QUESTION +

al])seamn

By date published

Action: | -=------- %/l Go | 0of2selected Any date
Today

() QUESTION TEXT DATE PUBLISHED PUBLISHED RECENTLY? Past 7 days

() What's your favourite colour? Aug. 12,2018, 11:02 p.m. This month
This year

() What did you have for breakfast? Aug. 12,2018, 10:53 p.m.

2 questions

COSC346 Lecture 12,2018 5

Simplified Django Architecture

Request

v

Middleware

v

URL Resolver

Response

*

Middleware

COSC346 Lecture 12,2018

View

f

Template
Subsystem

Model

ORM

Simplified Django Architecture

Request

v

COSC346 Lecture 12,2018

Lifecycle of an HTTP Request

* Client sends request to server

* Server processes the request (middleware)
* Security
* Compression
* Session Handling
* URL Normalisation
* Authentication of users
° Server generates response

* Serverreturns response

COSC346 Lecture 12, 2018

HttpRequests in Django

* The request is a command

GET /polls/ HTTP/1.1
Host: localhost:8000

* Django's HttpRequest classes pass state
through the system

* scheme ('http)
* method ('GET)
* path (‘'/polls/’)

COSC346 Lecture 12, 2018

Middleware - Django

* Security

* various security options, like HSTS, XSS filtering
* Compression

° to save data
e Session Handling

* storing arbitrary data for each visitor (cookies)
* URL Normalisation

* qappend slashes, prepend 'www'

* Authentication of users

* adds currently logged in user to the request
COSC346 Lecture 12,2018 10

Middleware - Django

HttpRequest
instance

-

COSC346 Lecture 12,2018

Security

v t

Compression

v t

Session Handling

v t

URL
Normalisation

v t

Authentication

HttpResponse
generation

~

HttpResponse
instance

Middleware - Django

* All these middleware have the same
interface:

class SimpleMiddleware:
def __init__(self, get_response):
self.get_response = get_response
One-time configuration and initialisation.

def __call__(self, request):
Code to be executed for each request before
the view (and later middleware) are called.

response = self.get_response(request)

Code to be executed for each request/response after
the view 1is called.

return response

COSC346 Lecture 12,2018 12

Simplified Django Architecture

COSC346 Lecture 12,2018

Model

ORM

13

Models

Basic building block of your application

Defines the data you'll store in the database
and what's available in the views.

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published')

def _str_ (self):
return self.question_text

class Choice(models.Model):

question = models.ForeignKey(Question, on_delete=models.CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

def str_ (self):
return self.choice_text

COSC346 Lecture 12, 2018 14

Model Fields

* Map to/from Python and Database Types
* NULLable?
* |lookup values — primary/foreign key
* relationships — one-to-one, one-to-many, ...
* Validation
* null or not, valid choices, etc.
* Database table/column names
* ensure name's valid for the database

All this depends on the DB and the data type

COSC346 Lecture 12,2018 15

Model Fields

class Field():
"""Base class for all field types"""

skipping some stuff

def __init__(self, verbose_name=None, name=None, primary_key=False,
max_length=None, unique=False, blank=False, null=False,
db_index=False, rel=None, default=NOT_PROVIDED, editable=True,
serialize=True, unique_for_date=None, unique_for_month=None,
unique_for_year=None, choices=None, help_text=", db_column=None,
db_tablespace=None, auto_created=False, validators=(),
error_messages=None):

COSC346 Lecture 12,2018 16

Model-View-Controller

* Separation between state, logic, and
presentation

* Probably the most common pattern
* Android
* iOS
* Django (and a lot of other web frameworks)
* (probably) most GUI applications

* We'll see a Swift example in the Ul part

COSC346 Lecture 12, 2018 17

Simplified Django Architecture

URL Resolver

COSC346 Lecture 12,2018

View

Template
Subsystem

Model

<>

18

Controller - Django

* Controls the flow of information between th
model and the view.
* url patterns route the request to the view
* add extra data to help load the correct model

urlpatterns = [
path(r'', views.IndexView.as_view(), name='index'),
path(r'<int:pk>/", views.DetailView.as_view(), name='detail'),
path(r'<int:pk>/results/", views.ResultsView.as_view(), name='results"'),
path(r'<int:question_id>/vote/"', views.vote, name='vote'),

COSC346 Lecture 12,2018 19

Views

* Easily change representation of the objects
* HTML/CSS/JS for humans
* JSON/XML for computers
* CSV/XLS for further processing
* Charts/graphs
* Images
* Multiple views of the data are possible
* table and graph showing the same content

Views - Django

class IndexView(generic.ListView):
template_name = 'polls/index.html’

context_object_name = 'latest_question_list'
class DetailView(generic.DetailView): . 2
nodel = Question What did you have for breakfast?

template_name = 'polls/detail.html’

e Toast -- 1 vote
e Cereal -- 0 votes

class ResultsView(generic.DetailView): e Fruit -- 0 votes
model = Question Vote again?

template_name = 'polls/results.html’ '-\\\\ “k\j>

l Renders to ...

=

<hl>{{question.question_text}}</hl>

{% for choice in question.choice_set.all %}
{{choice.choice_text}} —— {{choice.votes}} vote{{choice.votes|pluralize}}</1i>
% endfor %}

Django's
Template

Vote again?

Language

COSC346 Lecture 12,2018

Overview

Request

v

Middleware

v

URL Resolver

Response

*

Middleware

COSC346 Lecture 12,2018

View

*

Template
Subsystem

Model

ORM

22

Design Pattern - Decorator

e Structural
* Add/remove functionality af runtime
* Wrap the original code

* Adds complexity (cognitive load)

 Can cause problems when specific types are
needed

* Django’'s Middleware wrapping the view

COSC346 Lecture 10, 2018 23

Toolmaker

Builder

Decorator Example

protocol Coffee { class SimpleCoffee: Coffee {
func getIngredients() -> String , return 3.0
¥
class CoffeeDecorator: Coffee { func getIngredients() —> String {
private let decoratedCoffee: Coffee return "Coffee"
fileprivate let sep: String =", " y ¥
required init(decoratedCoffee: Coffee) { _ .
self.decoratedCoffee = decoratedCoffee final class Milk: CoffeeDecorator {
1 required init(decoratedCoffee c: Coffee) {
super.init(decoratedCoffee: c)
func getCost() —> Double { }
return decoratedCoffee.getCost()
1 override func getCost() —> Double {
return super.getCost() + 1.0
func getIngredients() -> String { ¥
return decoratedCoffee.getIngredients()
3 override func getIngredients() —> String {
1 return super.getIngredients() + sep
+ IIMi'LkII
b
¥

var simpleCoffee: Coffee = SimpleCoffee()
print("Cost : \(simpleCoffee.getCost()); Ingredients: \(simpleCoffee.getIngredients())")

var coffeeWithMilk: Coffee = Milk(decoratedCoffee: simpleCoffee)
print("Cost : \(coffeeWithMilk.getCost()); Ingredients: \(coffeeWithMilk.getIngredients())")

COSC346 Lecture 10, 2018 24

Decorator in the real world

* Java's Input/Output Stream
* FilelnputStream
* BufferedlnputStream
* GziplnputStream
* ObjectlinputStream

NOT python's @decorator

COSC346 Lecture 10, 2018

25

Summary

* Real-word OO software
* Django (web framework)
* Polls (application)

* Design Patterns discussed:

* Factory

 Command

* Decorator

* Model-View-Controller

COSC346 Lecture 10, 2018

26

Complete® Django Architecture

Request

v

Middleware

v

URL Resolver

Response

*

Middleware

Forms

Storage

COSC346 Lecture 12,2018

View

*

Template
Subsystem

Model

ORM

Signals

Fixtures

*more or less

27

