Object Oriented

Programming Review

COSC346

UNIVERSITY

PARTICIPANTS NEEDED FOR Orreo
COURSE ADVICE STUDY

NEW ZEALAND

We are seeking 15-20 participants for this
The project explores the factors influencing undergraduate project, which is entitled ‘Data driven
students’ decisions regarding their path of study, e.g., who course advising'. If you are:
guides their decisions, how confident are they with these
decisions, and how can the course advising process be * On-campus full fime undergraduate
improved to better suit their needs. information science and computer

science students,
The project entails an initial short profiling questionnaire (5

mins), followed by a focus group session (up to 1 hour long). * Sfudents e[’rher ir'1 ’rhe first year of their
degree orin their final year.

You will be given the following reimbursement:

$20 New World
voucher!

If you interested in participating please email: Senorita
John: senorita.john@postgrad.otago.ac.nz by Friday (24t August) this week.

mailto:senorita.john@postgrad.otago.ac.nz

OOP Review

You Are Here

Object-Oriented
Programming

Application

AppKit

Foundation
Framework

User
> Interfaces

Standard
Library

Swift

Objective-C
runtime

Computer

Why OOP

Application

AppKit

A
Foundation .
Framework Slow Re-usable Team, Fast Runtime Complex,
Decisions Graphical

Standard

Library

Swift

Individual, Compile-time Simple, Text-

Objective-C v Fast Specific Slow Decisions based
runtime
Computer

COSC346 Lecture 13, 2018 4

Procedural versus Object-Oriented

Procedural Object-Oriented

-
[HaMMeRTIME] { COLARORATE |
— Mmessage ﬂ

LISTEN
xked-com
1. Functions act on data 1. Objects contain encapsulated
A program organises data and associated methods
function calls to 2. A program describes how
manipulate data objects interact via messages

COSC346 Lecture 13, 2018

Classes and Objects

* Abstraction
* What the object does is more important than how it does it

interface implementation

* Encapsulation

* Conftrol how the intfernal state of the
object is accessed

* Accessor methods

* setters
e getters

. Visibility

* public, private, (fileprivate,) protected, internal variables & methods

* Interface versus implementation

COSC346 Lecture 13, 2018 6

Working with objects

* Constructors

* Create and initialise an object instance
* Destructors

* Clean up after object is decommissioned
* References

* Pointer to object’s location in memory

* There can be many references to the same object
* Copying objects

* Simple assignment might just copy object reference

* Need a method that copies the internal state
e Shallow copy
* Deep copy
COSC346 Lecture 13, 2018

Working with objects

« Comparing objects
 Comparing references only establishes if
they point fo the same object instance

* Need a method that captures the
meaning of relative order based on the
internal state

* Mutability

* The state of a mutable object may change

* The state of an immutable object cannot change (aside
from at initialisation fime)

* Immutability is somewhat analogous to constants
* Serialisation

* Process of converting an object info a data stream
COSC346 Lecture 13, 2018

Inheritance

* Good reasons for using inheritance
* Specialisation, specification, extension

* Not so good reasons for using inheritance
* Limitation, generalisation
* Costs and benefits of using inheritance

* Multiple inheritance
* Diamond of death

* |Inheritance vs. composition
* |s-a vs. has-a relationship

* Upcasting and downcasting

COSC346 Lecture 13,2018 9

Memory management

* Stack versus heap

* Local memory versus global memory
* Object ownership

* Who is responsible for destroying the object?
* Reference counting

* Keep frack of how many references there are in a
program to an object—destroy the object when no one
Is referencing it

* Retain cycles break reference counting
* Thus weak and strong references infroduced
* Contrast approaches: Manual / Garbage collector /
Automatic Reference Counting
COSC346 Lecture 13,2018 10

Polymorphism

() o
A7 g M

* Different classes, same methods
* Overloading

* Same function name, different arguments
* QOverriding

* Same function name, same arguments, different
Implementation in a different subbclass

e Generics
* Protocols / Interfaces / Abstract classes

* |Intfrospection / Reflection
* Queries about object type, methods, efc.

COSC346 Lecture 13, 2018 1

Object interconnection

e Cohesion
* How well the object infernals go together
* Coupling

* The degree of inter-dependency
between objects

* Design goals: loose coupling and high cohesion
* Callbacks

* Arguments to methods that reference executable code
* Delegates

* References to objects that implement a number of
methods to use as callbacks

COSC346 Lecture 13, 2018 12

Standard libraries

e Collections/containers

Classes that hold objects

* Common containers

Lists

AIrQys

Queues

Stacks
Maps/Dictionaries
Sefts

e Serialisation

COSC346 Lecture 13, 2018

Memory

010010101010
101010110001
111010101000

head —

101000000000
000000000000
011101010111
111101010101
010111111110

DN

111010101010

001010101001

010101011101

13

Object-oriented design

* What are use-casese

* Sequence diagrams =% S

* Class diagrams

COSC346 Lecture 13,2018 14

Object-oriented design patterns

* Design patterns versus algorithms
* Behavioural/Creational/Structural

1. lterator
2. Singleton
3. Strategy
4. Facade
5. Factory
6. Flyweight
/. Observer

COSC346 Lecture 13, 2018

8. Command
9. Memento

10. Decorator
1. MVC

12. Chain of
Responsibility

15

Design Pattern - Chain of Responsibility

* Process varied requests
* May be dealt with by different handlers

* Click event dispatch in GUI applications
* start at child
* bubble up to parents
* can stop propagation at any point

* Different to decorators!!!

COSC346 Lecture 13, 2018 16

Toolmaker

Builder

Chain of Responsibility Example

final class MoneyPile {

s

let value: Int
var quantity: Int
var nextPile: MoneyPile?

init(value: Int, quantity: Int, nextPile: MoneyPile?) {

self.value = value
self.quantity = quantity
self.nextPile nextPile

b

func canWithdraw(amount: Int) —> Bool {
var amount = amount
func canTakeSomeBill(want: Int) —> Bool {
return (want / self.value) > 0

var quantity = self.quantity
while canTakeSomeBill(want: amount) {
if quantity == 0 {
break
}

amount —= self.value
quantity =1
}

guard amount > @ else {
return true
¥

if let next = self.nextPile {
return next.canWithdraw(amount: amount)
}

return false

by

private

final class ATM {
private var hundred: MoneyPile
private var fifty: MoneyPile
private var twenty: MoneyPile
private var ten: MoneyPile

return self.hundred

init(hundred: MoneyPile,

fifty: MoneyPile,
twenty: MoneyPile,
ten: MoneyPile) {

self.hundred = hundred
self.fifty = fifty
self.twenty = twenty
self.ten = ten

return "Can withdraw:

var startPile: MoneyPile {

func canWithdraw(amount: Int) —-> String {

\(self.startPile.canWithdraw(

amount: amount))"

let ten = MoneyPile(10, 6, nil)

let twenty = MoneyPile(20, 2, ten)
let fifty =
let hundred = MoneyPile(100, 1, fifty)

MoneyPile(50, 2, twenty)

COSC346 Lecture 13, 2018

¥
b
var atm = ATM(hundred, fifty, twenty, ten)
print(atm.canWithdraw(amount: 310)) // false
print(atm.canWithdraw(amount: 100)) // true
print(atm.canWithdraw(amount: 165)) // false
print(atm.canWithdraw(amount: 30)) // true

17

CoR in the real world?

COSC346 Lecture 13, 2018

18

