
Object Oriented 
Programming Review

COSC346

42

PARTICIPANTS NEEDED FOR
COURSE ADVICE STUDY

The project explores the factors influencing undergraduate
students’ decisions regarding their path of study, e.g., who
guides their decisions, how confident are they with these
decisions, and how can the course advising process be
improved to better suit their needs. 
 
The project entails an initial short profiling questionnaire (5
mins), followed by a focus group session (up to 1 hour long).  
 
You will be given the following reimbursement:

 

$20 New World
voucher!

We are seeking 15-20 participants for this
project, which is entitled ‘Data driven
course advising’. If you are:
• On-campus full time undergraduate

information science and computer
science students,

• Students either in the first year of their
degree or in their final year.

If you interested in participating please email: Senorita
John: senorita.john@postgrad.otago.ac.nz by Friday (24th August) this week.

mailto:senorita.john@postgrad.otago.ac.nz

OOP Review

43COSC346 Lecture 13, 2018

Computer

Objective-C
runtime

Swift

Standard
Library

AppKit

Application

Object-Oriented
Programming

User
Interfaces

You Are Here

Foundation
Framework

Why OOP

44COSC346 Lecture 13, 2018

Speed Code Development Environment User Interface

Slow Re-usable Team, Fast Runtime
Decisions

Complex,
Graphical

Fast Specific
Individual,
Slow

Compile-time
Decisions

Simple, Text-
based

Computer

Objective-C
runtime

Swift

Standard
Library

AppKit

Application

Foundation
Framework

Procedural versus Object-Oriented

45COSC346 Lecture 13, 2018

Procedural Object-Oriented

1. Objects contain encapsulated
data and associated methods

2. A program describes how
objects interact via messages.

1. Functions act on data
2. A program organises

function calls to
manipulate data

xkcd.com

Classes and Objects

• Abstraction
• What the object does is more important than how it does it

• Encapsulation
• Control how the internal state of the

object is accessed
• Accessor methods

• setters
• getters

• Visibility
• public, private, (fileprivate,) protected, internal variables & methods

• Interface versus implementation
46COSC346 Lecture 13, 2018

Working with objects

• Constructors
• Create and initialise an object instance

• Destructors
• Clean up after object is decommissioned

• References
• Pointer to object’s location in memory
• There can be many references to the same object

• Copying objects
• Simple assignment might just copy object reference
• Need a method that copies the internal state

• Shallow copy
• Deep copy

47COSC346 Lecture 13, 2018

Working with objects

• Comparing objects
• Comparing references only establishes if

they point to the same object instance
• Need a method that captures the

meaning of relative order based on the
internal state

• Mutability
• The state of a mutable object may change
• The state of an immutable object cannot change (aside

from at initialisation time)
• Immutability is somewhat analogous to constants

• Serialisation
• Process of converting an object into a data stream

48COSC346 Lecture 13, 2018

Inheritance

• Good reasons for using inheritance
• Specialisation, specification, extension

• Not so good reasons for using inheritance
• Limitation, generalisation

• Costs and benefits of using inheritance
• Multiple inheritance
• Diamond of death

• Inheritance vs. composition
• Is-a vs. has-a relationship

• Upcasting and downcasting
49COSC346 Lecture 13, 2018

Memory management

• Stack versus heap
• Local memory versus global memory

• Object ownership
• Who is responsible for destroying the object?

• Reference counting
• Keep track of how many references there are in a

program to an object—destroy the object when no one
is referencing it

• Retain cycles break reference counting
• Thus weak and strong references introduced

• Contrast approaches: Manual / Garbage collector /
Automatic Reference Counting

410COSC346 Lecture 13, 2018

Polymorphism

• Different classes, same methods
• Overloading
• Same function name, different arguments

• Overriding
• Same function name, same arguments, different

implementation in a different subclass
• Generics
• Protocols / Interfaces / Abstract classes
• Introspection / Reflection
• Queries about object type, methods, etc.

411COSC346 Lecture 13, 2018

Object interconnection

• Cohesion
• How well the object internals go together

• Coupling
• The degree of inter-dependency

between objects
• Design goals: loose coupling and high cohesion
• Callbacks
• Arguments to methods that reference executable code

• Delegates
• References to objects that implement a number of

methods to use as callbacks

412COSC346 Lecture 13, 2018

Standard libraries

• Collections/containers
• Classes that hold objects

• Common containers
• Lists
• Arrays
• Queues
• Stacks
• Maps/Dictionaries
• Sets

• Serialisation
413COSC346 Lecture 13, 2018

Object-oriented design

• What are use-cases?

• Sequence diagrams

• Class diagrams

414COSC346 Lecture 13, 2018

Object-oriented design patterns

1. Iterator
2. Singleton
3. Strategy
4. Façade
5. Factory
6. Flyweight
7. Observer

8. Command
9. Memento
10. Decorator
11. MVC
12. Chain of

Responsibility

415COSC346 Lecture 13, 2018

• Design patterns versus algorithms
• Behavioural/Creational/Structural

Design Pattern - Chain of Responsibility

• Process varied requests
• May be dealt with by different handlers

• Click event dispatch in GUI applications
• start at child
• bubble up to parents
• can stop propagation at any point

• Different to decorators!!!

"16COSC346 Lecture 13, 2018

Chain of Responsibility Example

"17COSC346 Lecture 13, 2018

To
ol

m
ak

er
Bu

ild
er

final class MoneyPile {

 let value: Int
 var quantity: Int
 var nextPile: MoneyPile?
 init(value: Int, quantity: Int, nextPile: MoneyPile?) {
 self.value = value
 self.quantity = quantity
 self.nextPile = nextPile
 }

 func canWithdraw(amount: Int) -> Bool {
 var amount = amount
 func canTakeSomeBill(want: Int) -> Bool {
 return (want / self.value) > 0
 }
 var quantity = self.quantity
 while canTakeSomeBill(want: amount) {
 if quantity == 0 {
 break
 }
 amount -= self.value
 quantity -= 1
 }

 guard amount > 0 else {
 return true
 }
 if let next = self.nextPile {
 return next.canWithdraw(amount: amount)
 }
 return false
 }
}

final class ATM {
 private var hundred: MoneyPile
 private var fifty: MoneyPile
 private var twenty: MoneyPile
 private var ten: MoneyPile

 private var startPile: MoneyPile {
 return self.hundred
 }

 init(hundred: MoneyPile,
 fifty: MoneyPile,
 twenty: MoneyPile,
 ten: MoneyPile) {

 self.hundred = hundred
 self.fifty = fifty
 self.twenty = twenty
 self.ten = ten
 }

 func canWithdraw(amount: Int) -> String {
 return "Can withdraw:

\(self.startPile.canWithdraw(
amount: amount))"

 }
}

let ten = MoneyPile(10, 6, nil)
let twenty = MoneyPile(20, 2, ten)
let fifty = MoneyPile(50, 2, twenty)
let hundred = MoneyPile(100, 1, fifty)

var atm = ATM(hundred, fifty, twenty, ten)
print(atm.canWithdraw(amount: 310)) // false
print(atm.canWithdraw(amount: 100)) // true
print(atm.canWithdraw(amount: 165)) // false
print(atm.canWithdraw(amount: 30)) // true

CoR in the real world?

"18COSC346 Lecture 13, 2018

