
User Interfaces

Lecture 15

Application Programming on Mac OS

Hamza Bennani
hamza@hamzabennani.com

September 4, 2018

Logistics

I Office hours: Tue/Thu, 2pm to 3pm.
I Office: 250 Geoff Wyvill.
I Acknowledgment: Lech, David, Stephanie.
I Any questions, Feedback, Comments? Email:

hamza@hamzabennani.com
I Any suggestions for making the next 12 lectures rock?
I Assignment 2 due on 5th of October at 23:59 the latest.
I Presentations on the 3rd of October at lab time
I https://doodle.com/poll/nbetczehtku2heqa
I The assignment 2 is in pairs (3 pairs so far!!!).
I Labs not updated!
I Tutorials

1

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Mac OS X Application

Definition
An application is a complex system, made of many
subcomponents: graphical interface, data processing, event
handling, storage, multi-threading

2

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Cocoa Environment

I Cocoa is a Collection of Frameworks & Libraries. Key
parts:

I Appkit
I Provides a set of elements for GUI: windows, views,

buttons, . . .
I Provides controllers that glue model & views together
I Abstracts away most of the logic “under-the-hood” - such as

the mouse and keyboard event handling, etc.
I Core Data

I Abstracts away data storage
I Options for XML, binary files, or SQLite database for

storage
I Foundation Framework

I Library for custom logic binding all the other elements
together

3

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

"One Pattern to Rule them All"

I MVC
I Model: Information storage
I View: Interface that allows the user to interact with the

information
I Controller: Coordinates interaction between view & model

Sole purpose: decouple view & model as much as possible
I Cocoa framework heavily utilises the MVC pattern

4

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Appkit

5

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Applications types

I Single-window utility app
I Single-window library-style app
I Multi-window document-based app

6

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Single-window app

7

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

App Development

Three Ways
I Storyboards: Visual Tool for multiple application views and

transitions; (latest)
I XIBs/NIBs: one XIB for one single view; (old-school way)
I Custom Code: no GUI, programmatically.

Prototyping Merge Reusability Auto
Conflicts Layout

StoryBoards 3 7 7 3

XIBs/NIBs 3 7 3 3

Custom Code 7 3 3 7

8

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

NSApplication Class

I Every Cocoa application runs exactly one instance of an
NSApplication object - manages the lifecycle of an
application

I NSApplication is a singleton
I Instantiated and run from the main function of your program

executable
I NSApp is a global reference for the NSApplication object

instance
I Handles the loading of GUI at the start and keeps track of

windows
I For instance, which window has the focus, in terms of user

input

9

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

NSApplication Class

I Runs the main event loop
I Collects and dispatches application events, such as user

input
I Handles redrawing

I Your program becomes a delegate of the NSApplication
object instance, called after the application is loaded

10

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

NSApplication Class

I To get a reference to the running application

let application = NSApplication.shared()

let app = NSApp as NSApplication

I Has methods for:

I Terminating the application
I Maximising/minimising/hiding windows
I Updating windows
I Managing menus

11

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

XIB and NIB files

I XIB: "Xcode/XML Interface Builder"
I The XML file in your Xcode project that describes all the

visual components added in the Interface Builder
I The interface shown in the Interface Builder is a rendering

corresponding to the contents of this file
I No need to edit this file directly-when you modify your app’s

interface in the Interface Builder, the XIB will change
I NIB

I The compiled code corresponding to the XIB file
I This is a binary file that saves all the objects corresponding

to the AppKit’s classes specified in the XIB file
I Becomes part of your application bundle, but you don’t

access it directly-the application will load it at startup

12

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Application Bundle Contents

I Executable file that starts the application
I macOS hides that the bundle is actually a directory
I Clicking on .app runs the executable code in the bundle

I NIB file
I This file stores all the graphical elements from Xcode’s

Interface Builder that are part of your application
I When your application starts, the NIB file is one of the first

things to get loaded
I Other files that you included in your Xcode project

I Images, media, etc.
I You can access these resources by loading them from the

main bundle - the path of the bundle can be found using the
NSBundle object corresponding to your application bundle

13

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Default Cocoa Application

14

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Custom Cocoa Application

15

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Application Delegate

I Code to control your application goes in the
AppDelegate.swift file

I Your application delegate serves the NSApplication object
I A.D. subscribes to the NSApplicationDelegate protocol,

which contains optional methods for:
I launching, terminating, managing the active status, and

hiding your application
I managing windows and dock actions associated with your

application
I opening and printing files

I Your code should be placed in the
applicationDidFinishLaunching: method, which gets
invoked by NSApplication after it has completed loading
the GUI from NIB

16

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Application Execution
After each object is unarchived from the NIB file and connected (via actions
and outlets), it is sent an awakeFromNib message.

17

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Main Event Loop

I Waits for events from the OS and dispatches them to
appropriate handlers

I The autorelease pool is drained after each pass through
the event loop

I When the application terminates, your objects are
destroyed

18

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

NSRunLoop Class

I You can get a reference to the main loop running in the
NSApplication instance as follows:

let loop = RunLoop.current

I Reference to the current loop is useful for adding timers
and communication ports

19

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Interface Builder

I Xcode’s GUI for creating Cocoa Applications
I You can design the look of your application by dropping

various visual elements in the application window
I You can connect graphically various visual elements to

your application

Targets and Action
connect controls to code that is invoked when user interacts
with the control

Outlets
references in your code to various visual elements, so that they
can be controlled programmatically

20

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Outlets

I How do you reference in your code the objects
corresponding to the UI elements created in the Interface
Builder?

I In Cocoa, these references are called outlets
I In the interface definition for the class, which is going to

contain a reference to a given UI object, define a weak var
preceded by the @IBOutlet annotation

I The @IBOutlet annotation does not change anything in
terms of the program, except for being a special marker for
the Interface Builder for keeping track of outlets

I In the Interface Builder you can control-click a UI element
and connect it to an outlet

21

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Targets and Actions

I What do you want to happen when a user clicks on a
button, or a slider, or a checkbox, or other UI control
element?

I Create an action - it is a method that implements the logic
in response to a user interacting with a control element

I An action method is any method that returns nothing and
accepts one parameter (identifying the sender)

I The object implementing the action for some control
element is referred to as the target

22

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Targets and Actions

I Connection of UI elements to corresponding targets and
actions can be done graphically in the Interface Builder

I In the interface for the target class specify an action
method using the @IBAction annotation

I The @IBAction annotation is used by the Interface Builder
to indicate an action method

I In the Interface Builder control-click a UI element and
connect it to a specific action

23

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Custom Cocoa Application

24

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Summary

I Anatomy of the default Cocoa application.
I NSApplication: singleton class that runs your application
I NSApplicationDelegate: protocol for application delegate

with methods for handling various application events
I XIB/NIB-file storing the visual elements
I RunLoop-event loop class, useful for running timers
I The outlet, target and action mechanism which connects

each GUI object to the code that dictates their behaviour.
I @IBOutlet-annotation that lets Interface Builder know that

following pointer is a reference to a GUI element
I @IBAction-annotation that lets Interface Builder know that

following definition is a an action method to be invoked
when a user interacts with a GUI control element

25

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Timer App

26

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Timer App

@IBAction startStopAction(sender)
@IBAction resetAction(sender)
validateMenuItem():Bool
countUp()

seconds:Int
running:Bool

AppDelegate

startstopButton

setEnabled(Bool)
setTitle(title)

action:Selector=startStopAction

NSButton

setEnabled(Bool)

action:Selector = resetAction

NSButton

action:Selector=startStopAction

NSMenuItem

action:Selector=startStopAction

NSMenuItem

setStringValue(value)

NSTextField

msg:Selector = countUp

NSTimer

target

target

target

target

target

resetButton

timerDisplay

stopMenuItem

startMenuItem

27

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Code
IBOutlets & Properties

@IBOutlet weak var window: NSWindow!
@IBOutlet weak var outletLabel: NSTextField!
@IBOutlet weak var outletReset: NSButton!
@IBOutlet weak var outletStartStop: NSButton!
@IBOutlet weak var outletStartStopMenu:

NSMenuItem!
@IBOutlet weak var outletResetMenu:

NSMenuItem!
var seconds: Int = 0 ;
var running: Bool = false;

28

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Code
IBActions

@IBAction func actionStartStop(_ sender: Any) {
if (running == true){

stopTimer ();
} else { // running == false!!

startTimer ();
}

}
@IBAction func actionReset(_ sender: Any) {

resetTimer ();
}

29

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Code
Helpful Functions

func updateLabel () {
var secondsLocal = seconds;
let hour = secondsLocal /3600;
secondsLocal %= 3600;
let min = secondsLocal /60;
secondsLocal %= 60;
outletLabel.stringValue = String(

format:"%02ld:%02ld:%02ld",
hour ,min ,secondsLocal);

}

30

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Code
Helpful Functions

@objc func countUp(_ theTimer: Foundation.Timer){
if (running == true){

self.seconds += 1;
updateLabel ();

} else {
theTimer.invalidate ();

}
}

31

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Code
Main Functions

func startTimer (){
let theTimer = Foundation.Timer(timeInterval:

1, target: self , selector:
#selector(AppDelegate.countUp(_:)),
userInfo: nil , repeats: true);

let loop = RunLoop.current;
loop.add(theTimer , forMode:
RunLoopMode.commonModes);
self.running = true;
outletStartStop.title = "Stop";
outletStartStopMenu.title = "Stop";
outletReset.isEnabled = false;

}

32

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Code
Main Functions

func stopTimer () {
self.running=false;
outletReset.isEnabled=true;
outletStartStop.title = "Start";
outletStartStopMenu.title = "Start";

}

func resetTimer (){
self.seconds = 0;
updateLabel ();

}

33

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

Code
Main Functions

override func validateMenuItem(_ menuItem:
NSMenuItem) -> Bool {

if (menuItem == outletStartStopMenu){
return true;

} else if (menuItem == outletResetMenu){
return !running;

} else {
return true;

}
}

34

Hamza Bennani -*- COSC346 -*- Application Programming on Mac OS -*- September 4, 2018

