
User Interfaces

Lecture 16

Model - View - Controller

Hamza Bennani
hamza@hamzabennani.com

September 6, 2018



Last Lecture Summary

I Default Cocoa application.
I NSApplication
I NSApplicationDelegate
I XIB/NIB-file storing the visual elements
I RunLoop-event loop class, useful for running timers
I Outlet, target and action mechanism.
I @IBOutlet-annotation
I @IBAction-annotation
I Any questions ???

1

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



MVC

Definition
I Introduced in the late 70’s in Smalltalk
I Prevalent in many frameworks:

I Web development
I Cocoa

2

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



MVC in Applications
Generally, applications perform the following functions:

3

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



MVC in Applications
Generally, applications perform the following functions:

4

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



MVC in Applications
Generally, applications perform the following functions:

5

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



MVC in Cocoa

I AppKit: classes that provide the view and controller
functionality

I Core Data: model that abstracts away details of archiving
(In this paper we will be almost always creating our own
models)

I Foundation: classes that glue and customise all the
components together

6

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



MVC in Cocoa Example
User interacts with a slider

1. Slider sends a msg to the controller with the new value
2. The controller notifies the model about the value change
3. The model updates the corresponding value

I Constraints checked, Update, Notification
4. Controller notifies the view that the model has changed

7

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



AppKit
MVC

8

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



AppKit
MVC

I NSResponder: handling of mouse and keyboard events
Abstract class

I NSView: rectangle responsible for rendering visual
information

I Subclass of NSResponder
I Abstract class: you either customise by extending it, or use

one of predefined subclasses, such as: NSTabView,
NSSplitView, NSScrollView, etc.

I NSControl: sending actions when user interacts with the
control

I Don’t confuse with a Controller
I Subclass of NSView
I Abstract class: you either customise by extending it, or use

one of predefined subclasses, such as: NSButton,
NSSlider, NSScroller, etc.

9

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



AppKit
MVC

I Bindings controllers:
I NSController, NSObjectController, NSArrayController,

NSUserDefaultsController, and NSTreeController
I These are special classes that use Cocoa’s bindings and

key value encoding technology, allowing connection and
binding data between view and model elements through
Interface Builder - no code necessary

I These objects implement common logic for mediating
between the model and the view

I Application behaviour:
I NSDocument, NSDocumentController, NSViewController,

and NSWindowController
I These control the fundamental aspects of a GUI

application, such as multiple windows, views and
documents

I Your custom controller: Typically, your application delegate
10

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



Core Data
MVC

I Collection of classes that abstract away the details of how
data is stored and manipulated
You work with entities (a little bit like a class), attributes
(like instance variables in a class), and relationships

I Possible to bind data to controllers in the Interface Builder
without needing code

I For persistent storage can store data as XML, binary
format, or in an SQLite database

11

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



Summary

I Model-View-Controller pattern underlines the design of
Cocoa framework.

I View: code that deals with the visual presentation side of
the program Tends to change often

I Model: code that implements the underlying
representation that stores the information/content Tends to
remain unchanged

I Controller: the code logic that connects the View and
Model components

12

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



TimerApp

13

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018



TimerApp MVC

14

Hamza Bennani -*- COSC346 -*- Model - View - Controller -*- September 6, 2018


