User Interfaces

Lecture 19

Cocoa: Mouse and Keyboard Events

Hamza Bennani
hamza@hamzabennani.com

September 18, 2018

UNIVERSITY

OTAGO

Te Whare Wananga o Otigo
NEW ZEALAND

Last Lecture

Where did we stop?

|%umufmu 1

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

» Events get filtered into a
queue by MacOS X

» Some events never reach
the application, like ?, or ?

» The active application
processes events one at a
time from the queue

Window Server

Core Services

Kemal Environmaent

Application environments Application environments

Carben

Hamza Bennani -*- COSC346

Cocoa: Mouse and Keyboard Events

September 18, 2018

The event loop

» Events are encoded as NSEvent objects and put into a
queue

» The active application takes events from the queue and
processes them
» NSEvent contains information such as location, time, etc .. .

Main run loop

Event source

event event

Window Server Mach Port |

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

Where events go?

Mouse Event Key Event
NSWindow NSWindow
L] sendEvent: LT sendEvent:
Hame
¥ Fmane | 1
T

» The active application NSApp object issues a sendEvent:
message to the active window
» A mouse event is forwarded to the view where the mouse is
pointing
» A key event is forwarded to the window’s “responder chain"

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

NSEvent

» Events are passed to handling methods as NSEvent
objects
» For mouse events, information includes:

>

vV vy vy VY VvVYy

locationInWindow

modifierFlags (NSShiftkeyMask, NSControlKeyMask, .. .)
timestamp

window - window where event occurred

clickCount - number of mouse clicks

pressure - tablet

deltaX, delta¥ - change in position

» For key events, information includes:

v

vV vy

characters - an NSString object with typed keys

isARepeat -YES or NO regarding whether key is held down
keyCode - actual key that user pressed

modifierFlags - same as mouse modifierFlags

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

NSResponder

» ...is an abstract class that dispatches received NSEvents
to methods corresponding to various mouse and keyboard
events

» All event-handling methods are declared in NSResponder.
The following classes inherit from it:

» NSWindow - so all windows

» NSView - so almost everything that’s in the window,
including NSControl objects, such as buttons, etc.

» NSApplication

» ...and even controllers: NSWindowController,
NSViewController

» You can override NSResponder messages that you want to
handle in your custom view

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

NSResponder Hierarchy

User interface |
Cocoa Bindings
NSColorPanel
NSFontPanal
NSSavePanel —— NSOpenPanel
NsObjest*—|- NEResponder—— .. 83PopLpution
Ensorawer Fnscolorwel
[ngwindow [[nsimagoview
NSWindowController FNSMatrx NSForm
}NSVW— N -NSPathControl
[NS ViewControier
! FNSSeroller
ol
-NSSplitview -NSShoer INSNHMV‘W
ppe
[-NS TabloHHeaderview [-NSTableView — [Scomonecs,
LNSTextField .
NSSecuroToxtField
Text

= L NSText ——————— NSTextView

Fonts

*Class defined in the Foundation framework

| % UNIVERSITY

Hamza Bennani COSC346 Cocoa: Mouse Keyboard Events September 18, 20

Responding to Mouse Events

» Methods: mouseDown, mouseUp, mouseDragged,
mouseEntered, mouseExited, mouseMoved, scrollWheel

» Note: certain rules apply to mouse events, e.g., mouse-up
must be preceded by mouse-down, mouse-dragged must
occur between mouse-down and mouse-up, etc.

» The methods get passed an argument of NSEvent type,
which responds to methods that provide information about
the mouse event:

» clickCount - number of clicks that occurred

» windowLocation - location where mouse was clicked

» Methods to obtain scroll wheel information

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

Responding to Key Events

-
» Key events are more S (i —
complicated than mouse * N

events, because they lack e e | iy e S
a target location "
» Certain key combinations R e

go straight to menu bar

NSWindow sends to
irst

(e.g., command-Z), others v
to operating system (e.qg.,
Mission Control) oo ST

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

The Responder Chain

» Key events are processed using
the responder chain

» A message is initially passed to

the first responder nextResponder &

» If the first responder does not 7 | keyDown:
accept the message, it is

passed to the nextResponder
nextResponder
» Responder chain implements the]

chain of responsibility design

keyDown:

- =

keyDown:

attern
p . nextResponder
» The responder chain is ements
implemented in NSResponder keyDown:

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

The Responder Chain

First View -, NSWindow A App
i hierarchy NSWindow MNSWindowController delegate NSApp delegate
First View - . NSWindow
responder hierarchy NSWindow NSWindowCantroller delegate
NSDocument NsApp [PP NSDocumentController

delegate

| UNIVERSITY, 11
%OTAGO

Hamza Bennani -*- COSC346 Cocoa: Mouse and Keyboard Events September 18, 20

Window Types

» Assumption: in any application, even if it is multi-window,
there is only one window with the user’s focus. Therefore,
the windows are categorised into the following types:

» Main window - the window that the user is working in
currently

» Key window - the window that accepts user’s input

» Inactive window - all other windows

» The main and key windows often are the same window -
common exception are window panels for opening, saving,
preferences, etc., which take input focus, but are not main
windows

» The NSApplication singleton has separate references to the
main and key windows (although often these refer to the
same window object)

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

First Responder

Window Change

» Each window has a first responder outlet
» The active window’s first responder gets key events
» The inner workings of NSApplication update its keyWindow
outlet to correspond to the window currently selected by
the user
» A mouse click on an inactive window does not send an
event to that window, it just changes that window to become
the keyWindow

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

First Responder

Window Change

bfasgran —
'__;--"' T WS TextFinid
/ G Vigw
WEBuitan
[Wdpplcation | —HEWindom | ——
e
T =
\ ”A‘ 7 \ NS TextView
[T, 3
ASWindow B [WS TaxtFieid |
s
e |
Crilarileiem
-—====< .
WS ToxtFiid | |
rsElesgoniie i 1
)
')
)

!
UNIVERSITY

OTAGO ‘

LS

Hamza Bennani *- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

Initial First Responder

» What does the first responder outlet point to just after a

window is created?
» Initial first responder is the element that window’s first

responder points to by default
» You can set the initial first responder:

import Cocoa

class OurWindowController: NSWindowController {
@IBOutlet weak var viewl: NSView!
@IBOutlet weak var view2: NSView!

convenience init() {
self.init()

self.window?.initialFirstResponder = viewl

Cocoa: Mouse and Keyboard Events -*- September 18, 2018

Hamza Bennani -*- COSC346

First Responder

View Change

» The inner workings of the
NSWindow object updates
its firstResponder outlet to
reference the currently
selected view

» The first responder for the

application is the object T e Djﬁiﬂ
pointed to by the e I
firstResponder reference 'M‘_;W—fv[]
of the key Window e

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

First Responder Placeholder

>

In Interface Builder there’s a placeholder object that stands
in for an arbitrary first responder

» You can set custom action methods for this placeholder

» You can connect target actions from window elements to
the first responder placeholder

» At run-time, when the window element is selected, it sends
an action to the object that happens to be the current first
responder

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

NSControl

v

Object that inherits from NSResponder

v

It contains an NSCell object, which has a reference to
target object and action selector
Buttons, check boxes, and many other Ul controls inherit
from NSControl
» Each different control overrides selected NSResponder
methods to redirect the event to the action selector of the
target object (if target and action have been set)
» Example: NSButton class overrides mouseDown event
invoking the action method of its corresponding target

Target and action values can be set through Interface
Builder

» We have seen how to do this in Lecture 15/16

v

v

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

NSControl

» Target and action values can also be set programmatically
» This example modifies the ViewController of a storyboard

» myB is an NSButton without an IBAction set in the Xcode
IB

import Cocoa
class ViewController: NSViewController {
@IBOutlet weak var label: NSTextField!
@IBOutlet weak var myB: NSButton!
var count:Int = @
override func viewDidLoad() {
super.viewDidLoad()
myB.target = self
myB.action = #selector(ViewController.clickAction(sender:))

@IBAction func clickAction(sender: AnyObject) {
count += 1
label.stringValue = "Click count \(count)"
}

(UniversiTy 19
0

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

TR

NSObject”™

UNIVERSITY

TAGO

User Intertace

Cocoa Bindings
b
B NSBro
{ieHeEce NSControl - NSButton NSPopUpBution
I-NSColortel
|-NSimageView
-NSMatrix NSForm
NSView F-NSPainConirol
[-NSRulsEditor ——NSPredicateEdior
-NSScrober
|-NSSegmentedContral
I-NSSlider NSOutineView
-NSStepper NS
[-NSTavieview
C 4 NSSearchField
i NSSecure TextField
Text
Fonts.

* Class dafined in the Foundalion framewor

20

COSC346 Cocoa: Mouse

eyboard Events

September 18, 2

Things To Watch out for?!

» The pre-made objects in the Cocoa’s object library that
inherit from NSResponder override various methods to
implement specific behaviour for the type of interface they
represent

» Examplet:

» NSButton (which is an NSControl), overrides mouseDown:
method to execute an action of the corresponding target

» If you extend NSButton and override mouseDown: method,
you may disable the target action functionality

» Example2:
» NSView becomeFirstResponder: returns NO by default

» Override method in your custom view to return YES if you
want the view to become a part of the responder chain

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

Summary

We examined how Cocoa applications process events and introduced some
concepts that make dealing with events in your program easier

» NSEvent - object representing an event with all information
about it

» NSResponder - an abstract class that sorts out the events
it receives into more readable methods corresponding to
mouse and keyboard events

» NSControl - an abstract class that contains a reference to
a target and action, which can be triggered after an event

» First responder - reference to an object in a window that
has focus

» First responder placeholder - object in Interface Builder
with custom actions to which controls can be connected: at
runtime, whenever the corresponding control event triggers
an action, it gets sent to the target that happens to be the

current first responder >

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018

Timer App

Multi Window

B Ry e

_| startStapacton

startianultem

target -

NSMenultem

AppDelegate

startStopAction

newTimerWindowi{sender)

NSMenultem

newTimeriVindow

MainMenu.xib
File’s owner: AppDelegate

| o

NSTextField subvigws|0]

- | stringVialue:String - cerion
NSButton

action Selector = startStapAction
enabled:Baol
fitle:String

NSView

ter-xib

ntr

NSButton

imerWindows[o]
4 Mode
TimerModel TimerWindowControliar |ac”
secondsint Emer
stopping:Boal @IBAction startStopAction(sender) (- NimerDisplay
running:Bool N | | @IBAtion rasetAction(sender)
et delegate | | secondsChanged(int}
stop() ‘
resall) Controller RS
! target 4.
target Y by
NSTimer N "
. RN e
msg Salector = countUp s -
targat _

UNIVERSITY

- | enabled:Boal

action:Selector = resetAction

OTAGO

COSC346

Cocoa: Mouse

eyboard Events

September 18, 2

23

Timer App

First Responder

=
-
NSMenultem PROXY FOR \

_ | startStopaction [y o
vo b
VX2
5 a
NSMenultem a
S SR—— [=gy-9
IBAction stariStopAction(sender) startStopAction D <
1 validataMenuliem() Bocl = E

[=

=
T3
AppDelegate L4 'l“~-. NSMenultem =

_ { newTimerWindow (]
target
newTimerWindowsander) L}
Respongerchan | | | | emm======= "
- - - - - -
o|= =g L£

/ MOdC\ fimerWindows[0] R * ingom] - -

» target
Timeriodel TimerWindowControlier o NS TextFiokd | s
sscondsint timer _ | stringValue:String = y
stopping:Bool @IBAction startStopAction(sender) |- \merDispiay e /
running Bool ... | @IBAction resethction{sender) subviews]1] |
o dalegate | ecendsChanged(int) |
N =
s Controller starsigpButon HoButton @ E
~{- - = action Selector = startStapAction RRubeiew R
H . enabled:Boal = o B
] _ | title:String & O F
target =t
/ wav.g,
NSTimer o
NSBution e B
msg-Selectar = oountUp action Selector = resetAction - E =
j ------J{-L_|enabledBoal = FI
- 24

UNIVERSITY

OTAGO

COSC346

