
User Interfaces

Lecture 19

Cocoa: Mouse and Keyboard Events

Hamza Bennani
hamza@hamzabennani.com

September 18, 2018



Last Lecture

Where did we stop?

1

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Events

I Events get filtered into a
queue by MacOS X

I Some events never reach
the application, like ?, or ?

I The active application
processes events one at a
time from the queue

2

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



The event loop

I Events are encoded as NSEvent objects and put into a
queue

I The active application takes events from the queue and
processes them

I NSEvent contains information such as location, time, etc . . .

3

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Where events go?

I The active application NSApp object issues a sendEvent:
message to the active window

I A mouse event is forwarded to the view where the mouse is
pointing

I A key event is forwarded to the window’s “responder chain"

4

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



NSEvent

I Events are passed to handling methods as NSEvent
objects

I For mouse events, information includes:
I locationInWindow
I modifierFlags (NSShiftKeyMask, NSControlKeyMask, . . . )
I timestamp
I window - window where event occurred
I clickCount - number of mouse clicks
I pressure - tablet
I deltaX, deltaY - change in position

I For key events, information includes:
I characters - an NSString object with typed keys
I isARepeat -YES or NO regarding whether key is held down
I keyCode - actual key that user pressed
I modifierFlags - same as mouse modifierFlags

5

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



NSResponder

I . . . is an abstract class that dispatches received NSEvents
to methods corresponding to various mouse and keyboard
events

I All event-handling methods are declared in NSResponder.
The following classes inherit from it:

I NSWindow - so all windows
I NSView - so almost everything that’s in the window,

including NSControl objects, such as buttons, etc.
I NSApplication
I . . . and even controllers: NSWindowController,

NSViewController
I You can override NSResponder messages that you want to

handle in your custom view

6

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



NSResponder Hierarchy

7

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Responding to Mouse Events

I Methods: mouseDown, mouseUp, mouseDragged,
mouseEntered, mouseExited, mouseMoved, scrollWheel

I Note: certain rules apply to mouse events, e.g., mouse-up
must be preceded by mouse-down, mouse-dragged must
occur between mouse-down and mouse-up, etc.

I The methods get passed an argument of NSEvent type,
which responds to methods that provide information about
the mouse event:

I clickCount - number of clicks that occurred
I windowLocation - location where mouse was clicked
I Methods to obtain scroll wheel information

8

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Responding to Key Events

I Key events are more
complicated than mouse
events, because they lack
a target location

I Certain key combinations
go straight to menu bar
(e.g., command-Z), others
to operating system (e.g.,
Mission Control)

9

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



The Responder Chain

I Key events are processed using
the responder chain

I A message is initially passed to
the first responder

I If the first responder does not
accept the message, it is
passed to the nextResponder

I Responder chain implements the
chain of responsibility design
pattern

I The responder chain is
implemented in NSResponder

10

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



The Responder Chain

11

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Window Types

I Assumption: in any application, even if it is multi-window,
there is only one window with the user’s focus. Therefore,
the windows are categorised into the following types:

I Main window - the window that the user is working in
currently

I Key window - the window that accepts user’s input
I Inactive window - all other windows
I The main and key windows often are the same window -

common exception are window panels for opening, saving,
preferences, etc., which take input focus, but are not main
windows

I The NSApplication singleton has separate references to the
main and key windows (although often these refer to the
same window object)

12

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



First Responder
Window Change

I Each window has a first responder outlet
I The active window’s first responder gets key events

I The inner workings of NSApplication update its keyWindow
outlet to correspond to the window currently selected by
the user

I A mouse click on an inactive window does not send an
event to that window, it just changes that window to become
the keyWindow

13

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



First Responder
Window Change

14

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Initial First Responder

I What does the first responder outlet point to just after a
window is created?

I Initial first responder is the element that window’s first
responder points to by default

I You can set the initial first responder:

15

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



First Responder
View Change

I The inner workings of the
NSWindow object updates
its firstResponder outlet to
reference the currently
selected view

I The first responder for the
application is the object
pointed to by the
firstResponder reference
of the key Window

16

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



First Responder Placeholder

I In Interface Builder there’s a placeholder object that stands
in for an arbitrary first responder

I You can set custom action methods for this placeholder
I You can connect target actions from window elements to

the first responder placeholder
I At run-time, when the window element is selected, it sends

an action to the object that happens to be the current first
responder

17

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



NSControl

I Object that inherits from NSResponder
I It contains an NSCell object, which has a reference to

target object and action selector
I Buttons, check boxes, and many other UI controls inherit

from NSControl
I Each different control overrides selected NSResponder

methods to redirect the event to the action selector of the
target object (if target and action have been set)

I Example: NSButton class overrides mouseDown event
invoking the action method of its corresponding target

I Target and action values can be set through Interface
Builder

I We have seen how to do this in Lecture 15/16

18

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



NSControl

I Target and action values can also be set programmatically
I This example modifies the ViewController of a storyboard
I myB is an NSButton without an IBAction set in the Xcode

IB

19

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



NSControl Hierarchy

20

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Things To Watch out for?!

I The pre-made objects in the Cocoa’s object library that
inherit from NSResponder override various methods to
implement specific behaviour for the type of interface they
represent

I Example1:
I NSButton (which is an NSControl), overrides mouseDown:

method to execute an action of the corresponding target
I If you extend NSButton and override mouseDown: method,

you may disable the target action functionality
I Example2:

I NSView becomeFirstResponder: returns NO by default
I Override method in your custom view to return YES if you

want the view to become a part of the responder chain

21

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Summary
We examined how Cocoa applications process events and introduced some
concepts that make dealing with events in your program easier

I NSEvent - object representing an event with all information
about it

I NSResponder - an abstract class that sorts out the events
it receives into more readable methods corresponding to
mouse and keyboard events

I NSControl - an abstract class that contains a reference to
a target and action, which can be triggered after an event

I First responder - reference to an object in a window that
has focus

I First responder placeholder - object in Interface Builder
with custom actions to which controls can be connected: at
runtime, whenever the corresponding control event triggers
an action, it gets sent to the target that happens to be the
current first responder

22

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Timer App
Multi Window

23

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018



Timer App
First Responder

24

Hamza Bennani -*- COSC346 -*- Cocoa: Mouse and Keyboard Events -*- September 18, 2018


