
Introduction to Swift 4
COSC346

/2https://www.otago.ac.nz/study/OTAGO121418#10

COSC346

Why Swift?

Sw
ift

• It is hard to appreciate Object Oriented
programming until you write very complex software.

• Cocoa is a complex OO framework for creating
User Interfaces

• It will demonstrate OO in action as well as enable
you to put your new-found knowledge about User
Interfaces into practice.

• Cocoa is written in Objective-C, but Objective-C is
getting a bit old.

• Swift is new and exciting and compatible with
Objective-C… and is also object-oriented.

!3COSC346 Lecture 2, 2018

Why Swift?

• Modern
• Result of research on programming languages
• Multi-paradigm – takes ideas from many languages, incorporating

their best features (in this course we will focus on the Object-
Oriented aspect)

• Safe
• Compiler forces you to do things right
• Emphasis on detecting errors at compile time rather than run-time

• Concise
• Easier and faster to develop software
• Easier to create development tools

• Cocoa environment – good example of natural progression
from OOP to User Interfaces

!4COSC346 Lecture 2, 2018

Sw
ift

Overview

• Programming patterns for safety
• Type checking
• Clear distinction between variables and constants
• Fussy compiler (but really developer’s best friend)

• Modern programming features for expressiveness
• Elegant way to do error checking with optionals
• Computed class properties
• Unicode-compliance inherent in Strings
• Elegant literals for arrays and dictionaries

• Objective-C like syntax for readability
• External names for function arguments
• May seem odd at first, unless you’re used to Objective-C

• Multi-paradigm
• Lots of options: object-oriented, procedural and functional

!5COSC346 Lecture 2, 2018

Sw
ift

“Hello, World!”

Sw
ift

import Foundation

print("Hello, World!")

• No header files
• No main function
• No semicolons (unless you’ve got multiple

statements in a single line)
• Almost like a scripting language

!6COSC346 Lecture 2, 2018

Variables and Constants

Sw
ift

var x: Int = 3 // Variable of type Int
let y: String = "cosc346" // Constant of type String

x = 4 // Value of x can change
y = "cosc360"

• The value of a variable can vary
• The value of a constant remains constant
• Variables and constants must be of specific

type…

!7COSC346 Lecture 2, 2018

 Cannot assign to value: 'y' is a 'let' constant!

Variables and Constants

Sw
ift

• The value of a variable can vary
• The value of a constant remains constant
• Variables and constants must be of specific

type…
• …but that type can be inferred by the

compiler
!8COSC346 Lecture 2, 2018

var x: Int = 3 // Variable of type Int
let y: String = "cosc346" // Constant of type String

x = 4 // Value of x can change
y = "cosc360" Cannot assign to value: 'y' is a 'let' constant!

Branching

!9COSC346 Lecture 2, 2018

Sw
ift

let a = 7
let b = 13
if a > b {
 //a is larger than b
} else if a < b {
 //a is smaller than b
} else {
 //a is equal to b
}

let cmd: Character = "q"
switch cmd {

case "l":
 print("l is for list")
case "q":
 print("q is for quit")
default:
 print("Don't understand '\(cmd)'")

}

if switchNo brackets
around
conditional

func biggerNumberFrom(let x: Int, let and y: Int) -> Int {
 if x > y {
 return x
 } else {
 return y
 }
}

let a = 7
let b = 13
let n = biggerNumberFrom(a, and: b)

Functions—Swift 2.2

!10COSC346 Lecture 2, 2018

External/Internal name of
the 1st argument

External
name of
the 2nd
argument

Internal
name of
the 2nd
argument

Function call

Sw
ift

func biggerNumber(from x: Int, and y: Int) -> Int {
 if x > y {
 return x
 } else {
 return y
 }
}

let a = 7
let b = 13
let n = biggerNumber(from: a, and: b)

Functions—Swift 4

!11COSC346 Lecture 2, 2018

External
name of
the 2nd
argument

Internal
name of
the 2nd
argument

Function call

Sw
ift

External
name of the
1st argument

Internal name
of the 1st
argument

String interpolation

!12COSC346 Lecture 2, 2018

func biggerNumber(from x: Int, and y: Int) -> Int {
 if x > y {
 return x
 } else {
 return y
 }
}

let a = 7
let b = 13
let n = biggerNumber(from: a, and: b)
print("The bigger number of \(a) and \(b) is \(n).")

The bigger number of 7 and 13 is 13.

Gives the following output:

Sw
ift

Value types and reference types

• Types have two flavours:
• Value types – when copied or passed into a function, create a new value

with same content; references to independent copies
• Reference types – when copied or passed into a function, create a new

reference to the original value; references to the same copy

!13COSC346 Lecture 2, 2018

var a1: String = "I am a String" //New String
var a2 = a1 //Copy of that String
a2 += " modified"

print("a1=\(a1)"); //Original string is intact
print("a2=\(a2)"); //Copy has been modified

var b1 = NSMutableString(string: "I am an NSString")
var b2 = b1 //Copy of that object
b2.append(" modified")

print("b1=\(b1)"); //Original string is modified
print("b2=\(b2)"); //Copy has been modified

“I am a
String”

“I am a
String

modified”

“I am an
NSString
modified”

a1

a2

b1

b2

Sw
ift

Value types and reference types

• Types have two flavours:
• Value types – when copied or passed into a function, create a new value

with same content; references to independent copies
• Reference types – when copied or passed into a function, create a new

reference to the original value; references to the same copy

!14COSC346 Lecture 2, 2018

var a1: String = "I am a String" //New String
var a2 = a1 //Copy of that String
a2 += " modified"

print("a1=\(a1)"); //Original string is intact
print("a2=\(a2)"); //Copy has been modified

var b1 = NSMutableString(string: "I am an NSString")
var b2 = b1 //Copy of that object
b2.append(" modified")

print("b1=\(b1)"); //Original string is modified
print("b2=\(b2)"); //Copy has been modified

“I am a
String”

“I am a
String

modified”

“I am an
NSString
modified”

a1

a2

b1

b2

Sw
ift

• All classes are reference types!

Collection Types

• Tuple – a list of mixed type data

• Array – indexed list of same type data

• Sets – unique unordered list

• Dictionary – hashed, keyword-addressable list

!15COSC346 Lecture 2, 2018

Sw
ift

var errMsg: (Int, String) = (404, "Not Found")
print("Error code \(errMsg.0): \(errMsg.1).")

var shoppingList: [String] = ["Six Eggs", "Milk", "Flour", "Baking Powder", "Bananas"]
print("Third item is: \(shoppingList[2])")

var favouriteGenres: Set<String> = ["Rock", "Classical", "Hip hop", "Jazz"]
if favouriteGenres.contains("Rock") {
 print("Rock is part of the set")
}

var airports: [String: String] = ["YYZ": "Toronto Pearson", "DUB": "Dublin", "LHR":
"Dublin Aiprort"]
let aname = airports["DUB"]
print("Airport DUB is \(aname!)")

Collection types

!16COSC346 Lecture 2, 2018

Sw
ift

Tuple 404 “Not Found”
0 1

Multi-value function return

!17COSC346 Lecture 2, 2018

func biggerAndSmallerNumber(from x: Int, and y: Int) -> (Int, Int) {
 if x > y {
 return (x, y)
 } else {
 return (y, x)
 }
}

let a = 7;
let b = 13;
let m = biggerAndSmallerNumber(from: a, and: b)
print("\(m.0) is bigger than \(m.1).")

Sw
ift

Tuple declaration

Tuple creation

Tuple element access

Iteration

!18COSC346 Lecture 2, 2018

Sw
ift

for index in 0..<2 {
 print("A index is \(index)")
}

for index in 0...2 {
 print("B index is \(index)")
}

for index in (0...2).reversed() {
 print("C index is \(index)")
}

for index in stride(from:1,to:5,by:2) {
 print("D index is \(index)")
}

for index in stride(from:-1,to:5,by:2) {
 print("E index is \(index)")
}

var shoppingList: [String] = ["Six Eggs",
"Milk", "Flour", "Baking Powder", "Bananas"]
var index=0

while(index < shoppingList.count) {
 print("\(shoppingList[index])")
 index += 1
}

for whileRange: 0, 1

Range: 0, 1, 2

Range: 2, 1, 0

Range: 1, 3

Range: -1, 1, 3

Different syntax for
different Swift

versions

Iteration

!19COSC346 Lecture 2, 2018

Sw
ift

for index in 0..<2 {
 print("A index is \(index)")
}

for index in 0...2 {
 print("B index is \(index)")
}

for index in (0...2).reverse() {
 print("C index is \(index)")
}

for index in stride(from:1,to:5,by:2) {
 print("D index is \(index)")
}

for index in stride(from:-1,to:5,by:2) {
 print("E index is \(index)")
}

var shoppingList: [String] = ["Six Eggs",
"Milk", "Flour", "Baking Powder", "Bananas"]
var index=0

while(index < shoppingList.count) {
 print("\(shoppingList[index])")
 index += 1
}

for whileA index is 0
A index is 1

B index is 0
B index is 1
B index is 2

C index is 2
C index is 1
C index is 0

D index is 1
D index is 3

E index is -1
E index is 1
E index is 3

Iteration

!20COSC346 Lecture 2, 2018

Sw
ift

var favouriteGenres: Set<String> =
["Rock", "Classical", "Hip hop", "Jazz"]
for genre in favouriteGenres {
 print("\(genre)")
}

var airports: [String: String] =
 ["YYZ": "Toronto Pearson",
 "DUB": "Dublin Airport",
 "LHR": "Heathrow Airport"]
for (code, name) in airports {
 print("\(code): \(name)")
}

for
Rock
Classical
Jazz
Hip hop

DUB: Dublin Airport
LHR: Heathrow Airport
YYZ: Toronto Pearson

let h = 5.0 //h is a Double
let i = 100 //i is an Int
let j = h/i
let k = i/h

Type Conversion

• Type conversion can be used to change a
variable types in an expression.

!21COSC346 Lecture 2, 2018

Sw
ift

 Binary operator ‘/’ cannot be applied of type ‘Double’ and ‘Int’!

let h = 5.0 //h is a Double
let i = 100 //i is an Int
let j = h/Double(i)

Converting i to a Double

 Binary operator ‘/’ cannot be applied of type ‘Int’ and ‘Double’!

Optionals

Sw
ift

• May or may not hold a value.

!22COSC346 Lecture 2, 2018

Nil cannot be assigned to type 'Int'!

 Expression implicitly coerced from 'Int?' to Any•

var status: Int? //Optional - can hold an Integer value
 //or nil
var failure: Int //Must hold an Integer

status = nil
status = 7

failure = nil

print(status)

Failure is not an Optional

Optional declared with a ?
following the type

Optional(7)

Optionals

Sw
ift

//Dictionary
var airports: [String: String] = ["YYZ": "Toronto Pearson", "DUB": "Dublin Airport"]

//Code string
var airportCode: String = "YOW"
//Optional variable for name
var airportName: String?

//Get the name from dictionary
airportName = airports[airportCode]

//If dictionary returned non-nil, then a name has been found
print("\(airportCode): ")
if airportName != nil { //Optionals must be unwrapped in order to access data
 print("\(airportName!)")
} else {
 print("not found")
}

//Optionals can be checked for nil and unwrapped at the same time using the let keyword
print("\(airportCode): ")
if let name = airportName {
 print("\(name)")
} else {
 print("not found")
}

• May or may not hold a value.

!23COSC346 Lecture 2, 2018

Optional unwrapped with a !
following the variable reference

Optionals

Sw
ift

//Dictionary
var airports: [String: String] = ["YYZ": "Toronto Pearson", "DUB": "Dublin Airport"]

//Code string
var airportCode: String = "YOW"
//Optional variable for name
var airportName: String?

//Get the name from dictionary
airportName = airports[airportCode]

if let len = airportName?.count {
 print("The airport name is \(len) 'characters' long")
}else{
 print("🤷 ")
}

• May or may not hold a value.

!24COSC346 Lecture 2, 2018

Optional Chaining — if the
airport name exists, call a method
on it…

Error Handling

!25COSC346 Lecture 2, 2018

 enum PrinterError: Error {
 case outOfPaper
 case noToner
 case onFire
 }

 func send(job: Int, toPrinter printerName: String) throws -> String {
 if printerName == "Never Has Toner" {
 throw PrinterError.noToner
 }
 return "Job sent"
 }

 do {
 let printerResponse = try send(job: 1440, toPrinter: "Gutenberg")
 print(printerResponse)
 } catch PrinterError.onFire {
 print("I'll just put this over here, with the rest of the fire.")
 } catch let printerError as PrinterError {
 print("Printer error: \(printerError).")
 } catch {
 print(error)
 }

Adopt the Error protocol

Use 'throws' in function
definition and to generate error

catch the errors

Revisiting value / reference types

• Common value types:
• struct
• enum
• tuple
• Array
• Dictionary
• String, Int, Bool, Int8, Int16, Int32, Int64, UInt, UInt8,

UInt16, UInt32, UInt64, Float, Float80, Double, …
• Common reference types:

• class
• NSObject

!26COSC346 Lecture 2, 2018

Summary

• Value/Reference Types
• Optionals
• Constants and Variables

• var and let
• Automatic Type Detection

• But can specify the types
• Internal/External names for functions

!27COSC346 Lecture 2, 2018

Value/reference copy playground
• Here’s the playground content I was using in lectures.

(Intended for copy/paste, rather than readability here!)
import Foundation

var a:Int = 1
var b:Int = a
a = 2
print("\(a),\(b)")

var c:String = "blah"
var d:String = c
c = "blob"
print("\(c),\(d)")

class ClassCopyTest { var t:Int = 0 }
var e:ClassCopyTest = ClassCopyTest()
var f:ClassCopyTest = e
e.t = 1
print("\(e),\(f)")

struct StructCopyTest { var t:Int = 0 }
var g:StructCopyTest = StructCopyTest()
var h:StructCopyTest = g
g.t = 1
print("\(g),\(h)")

