
Introduction to Swift 4
COSC346



/2https://www.otago.ac.nz/study/OTAGO121418#10



COSC346  

Why Swift?

Sw
ift

• It is hard to appreciate Object Oriented 
programming until you write very complex software. 

• Cocoa is a complex OO framework for creating 
User Interfaces 

• It will demonstrate OO in action as well as enable 
you to put your new-found knowledge about User 
Interfaces into practice. 

• Cocoa is written in Objective-C, but Objective-C is 
getting a bit old. 

• Swift is new and exciting and compatible with 
Objective-C… and is also object-oriented. 
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Why Swift?

• Modern 
• Result of research on programming languages 
• Multi-paradigm – takes ideas from many languages, incorporating 

their best features (in this course we will focus on the Object-
Oriented aspect) 

• Safe 
• Compiler forces you to do things right  
• Emphasis on detecting errors at compile time rather than run-time 

• Concise 
• Easier and faster to develop software 
• Easier to create development tools 

• Cocoa environment – good example of natural progression 
from OOP to User Interfaces
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Overview

• Programming patterns for safety 
• Type checking 
• Clear distinction between variables and constants 
• Fussy compiler (but really developer’s best friend) 

• Modern programming features for expressiveness 
• Elegant way to do error checking with optionals 
• Computed class properties  
• Unicode-compliance inherent in Strings 
• Elegant literals for arrays and dictionaries 

• Objective-C like syntax for readability 
• External names for function arguments 
• May seem odd at first, unless you’re used to Objective-C 

• Multi-paradigm 
• Lots of options: object-oriented, procedural and functional
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“Hello, World!”

Sw
ift

import Foundation 

print("Hello, World!")

• No header files 
• No main function 
• No semicolons (unless you’ve got multiple 

statements in a single line) 
• Almost like a scripting language
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Variables and Constants

Sw
ift

var x: Int = 3            // Variable of type Int 
let y: String = "cosc346" // Constant of type String 

x = 4                     // Value of x can change 
y = "cosc360"

• The value of a variable can vary 
• The value of a constant remains constant 
• Variables and constants must be of specific 

type…
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                        Cannot assign to value: 'y' is a 'let' constant!



Variables and Constants

Sw
ift

• The value of a variable can vary 
• The value of a constant remains constant 
• Variables and constants must be of specific 

type… 
• …but that type can be inferred by the 

compiler
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var x: Int = 3            // Variable of type Int 
let y: String = "cosc346" // Constant of type String 

x = 4                     // Value of x can change 
y = "cosc360"                        Cannot assign to value: 'y' is a 'let' constant!



Branching

!9COSC346 Lecture 2, 2018

Sw
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let a = 7 
let b = 13 
if a > b { 
    //a is larger than b 
} else if a < b { 
    //a is smaller than b 
} else { 
    //a is equal to b 
}

let cmd: Character = "q" 
switch cmd { 

case "l": 
    print("l is for list") 
case "q": 
    print("q is for quit") 
default: 
    print("Don't understand '\(cmd)'") 

}

if switchNo brackets 
around 
conditional



func biggerNumberFrom(let x: Int, let and y: Int) -> Int { 
    if x > y { 
        return x 
    } else { 
        return y 
    } 
} 

let a = 7 
let b = 13 
let n = biggerNumberFrom(a, and: b)

Functions—Swift 2.2
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External/Internal name of 
the 1st argument

External  
name of 
the 2nd 
argument

Internal 
name of 
the 2nd 
argument

Function call

Sw
ift



func biggerNumber(from x: Int, and y: Int) -> Int { 
    if x > y { 
        return x 
    } else { 
        return y 
    } 
} 

let a = 7 
let b = 13 
let n = biggerNumber(from: a, and: b)

Functions—Swift 4
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External  
name of 
the 2nd 
argument

Internal 
name of 
the 2nd 
argument

Function call

Sw
ift

External  
name of the 
1st argument

Internal name 
of the 1st 
argument



String interpolation
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func biggerNumber(from x: Int, and y: Int) -> Int { 
    if x > y { 
        return x 
    } else { 
        return y 
    } 
} 

let a = 7 
let b = 13 
let n = biggerNumber(from: a, and: b) 
print("The bigger number of \(a) and \(b) is \(n).")

The bigger number of 7 and 13 is 13.

Gives the following output:

Sw
ift



Value types and reference types

• Types have two flavours: 
• Value types – when copied or passed into a function, create a new value 

with same content; references to independent copies 
• Reference types – when copied or passed into a function, create a new 

reference to the original value; references to the same copy
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var a1: String = "I am a String" //New String 
var a2 = a1                      //Copy of that String 
a2 += " modified" 

print("a1=\(a1)");      //Original string is intact 
print("a2=\(a2)");      //Copy has been modified

var b1 = NSMutableString(string: "I am an NSString") 
var b2 = b1           //Copy of that object 
b2.append(" modified") 

print("b1=\(b1)");    //Original string is modified 
print("b2=\(b2)");    //Copy has been modified

“I am a 
String”

“I am a 
String 

modified”

“I am an 
NSString 
modified”

a1

a2

b1

b2

Sw
ift



Value types and reference types

• Types have two flavours: 
• Value types – when copied or passed into a function, create a new value 

with same content; references to independent copies 
• Reference types – when copied or passed into a function, create a new 

reference to the original value; references to the same copy
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var a1: String = "I am a String" //New String 
var a2 = a1                      //Copy of that String 
a2 += " modified" 

print("a1=\(a1)");      //Original string is intact 
print("a2=\(a2)");      //Copy has been modified

var b1 = NSMutableString(string: "I am an NSString") 
var b2 = b1           //Copy of that object 
b2.append(" modified") 

print("b1=\(b1)");    //Original string is modified 
print("b2=\(b2)");    //Copy has been modified

“I am a 
String”

“I am a 
String 

modified”

“I am an 
NSString 
modified”

a1

a2

b1

b2

Sw
ift

• All classes are reference types!



Collection Types

• Tuple – a list of mixed type data 

• Array – indexed list of same type data 

• Sets – unique unordered list 

• Dictionary – hashed, keyword-addressable list 
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Sw
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var errMsg: (Int, String) = (404, "Not Found") 
print("Error code \(errMsg.0): \(errMsg.1).")

var shoppingList: [String] = ["Six Eggs", "Milk", "Flour", "Baking Powder", "Bananas"] 
print("Third item is: \(shoppingList[2])")

var favouriteGenres: Set<String> = ["Rock", "Classical", "Hip hop", "Jazz"] 
if favouriteGenres.contains("Rock") { 
    print("Rock is part of the set") 
}

var airports: [String: String] = ["YYZ": "Toronto Pearson", "DUB": "Dublin", "LHR": 
"Dublin Aiprort"] 
let aname = airports["DUB"] 
print("Airport DUB is \(aname!)")



Collection types
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Sw
ift

Tuple 404 “Not Found”
0 1



Multi-value function return
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func biggerAndSmallerNumber(from x: Int, and y: Int) -> (Int, Int) { 
    if x > y { 
        return (x, y) 
    } else { 
        return (y, x) 
    } 
} 

let a = 7; 
let b = 13; 
let m = biggerAndSmallerNumber(from: a, and: b) 
print("\(m.0) is bigger than \(m.1).")

Sw
ift

Tuple declaration

Tuple creation

Tuple element access



Iteration
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Sw
ift

for index in 0..<2 { 
    print("A index is \(index)") 
} 

for index in 0...2 { 
    print("B index is \(index)") 
} 

for index in (0...2).reversed() { 
    print("C index is \(index)") 
} 

for index in stride(from:1,to:5,by:2) { 
    print("D index is \(index)") 
} 

for index in stride(from:-1,to:5,by:2) { 
    print("E index is \(index)") 
}

var shoppingList: [String] = ["Six Eggs", 
"Milk", "Flour", "Baking Powder", "Bananas"] 
var index=0 

while(index < shoppingList.count) { 
    print("\(shoppingList[index])") 
    index += 1 
}

for whileRange: 0, 1

Range: 0, 1, 2

Range: 2, 1, 0

Range: 1, 3

Range: -1, 1, 3

Different syntax for 
different Swift 

versions



Iteration
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Sw
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for index in 0..<2 { 
    print("A index is \(index)") 
} 

for index in 0...2 { 
    print("B index is \(index)") 
} 

for index in (0...2).reverse() { 
    print("C index is \(index)") 
} 

for index in stride(from:1,to:5,by:2) { 
    print("D index is \(index)") 
} 

for index in stride(from:-1,to:5,by:2) { 
    print("E index is \(index)") 
}

var shoppingList: [String] = ["Six Eggs", 
"Milk", "Flour", "Baking Powder", "Bananas"] 
var index=0 

while(index < shoppingList.count) { 
    print("\(shoppingList[index])") 
    index += 1 
}

for whileA index is 0 
A index is 1

B index is 0 
B index is 1 
B index is 2

C index is 2 
C index is 1 
C index is 0

D index is 1 
D index is 3

E index is -1 
E index is 1 
E index is 3



Iteration
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var favouriteGenres: Set<String> = 
["Rock", "Classical", "Hip hop", "Jazz"] 
for genre in favouriteGenres { 
    print("\(genre)") 
} 

var airports: [String: String] = 
    ["YYZ": "Toronto Pearson", 
     "DUB": "Dublin Airport", 
     "LHR": "Heathrow Airport"] 
for (code, name) in airports { 
    print("\(code): \(name)") 
}

for
Rock 
Classical 
Jazz 
Hip hop

DUB: Dublin Airport 
LHR: Heathrow Airport 
YYZ: Toronto Pearson



let h = 5.0 //h is a Double
let i = 100 //i is an Int
let j = h/i
let k = i/h

Type Conversion

• Type conversion can be used to change a 
variable types in an expression.
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Sw
ift

                        Binary operator ‘/’ cannot be applied of type ‘Double’ and ‘Int’!

let h = 5.0 //h is a Double 
let i = 100 //i is an Int 
let j = h/Double(i)

Converting i to a Double

                        Binary operator ‘/’ cannot be applied of type ‘Int’ and ‘Double’!



Optionals

Sw
ift

• May or may not hold a value.
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Nil cannot be assigned to type 'Int'!

                       Expression implicitly coerced from 'Int?' to Any•

var status: Int?    //Optional - can hold an Integer value 
   //or nil 
var failure: Int    //Must hold an Integer 

status = nil 
status = 7 

failure = nil 

print(status)

Failure is not an Optional

Optional declared with a ? 
following the type

Optional(7)



Optionals

Sw
ift

//Dictionary 
var airports: [String: String] = ["YYZ": "Toronto Pearson", "DUB": "Dublin Airport"] 

//Code string 
var airportCode: String = "YOW" 
//Optional variable for name 
var airportName: String? 

//Get the name from dictionary 
airportName = airports[airportCode] 

//If dictionary returned non-nil, then a name has been found 
print("\(airportCode): ") 
if airportName != nil { //Optionals must be unwrapped in order to access data 
    print("\(airportName!)") 
} else { 
    print("not found") 
} 

//Optionals can be checked for nil and unwrapped at the same time using the let keyword 
print("\(airportCode): ") 
if let name = airportName { 
    print("\(name)") 
} else { 
    print("not found") 
}

• May or may not hold a value.
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Optional unwrapped with a ! 
following the variable reference



Optionals

Sw
ift

//Dictionary 
var airports: [String: String] = ["YYZ": "Toronto Pearson", "DUB": "Dublin Airport"] 

//Code string 
var airportCode: String = "YOW" 
//Optional variable for name 
var airportName: String? 

//Get the name from dictionary 
airportName = airports[airportCode] 

if let len = airportName?.count {
    print("The airport name is \(len) 'characters' long")
}else{
    print("🤷 ")
}

• May or may not hold a value.
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Optional Chaining — if the 
airport name exists, call a method 
on it…



Error Handling
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 enum PrinterError: Error { 
     case outOfPaper 
     case noToner 
     case onFire 
 }

 func send(job: Int, toPrinter printerName: String) throws -> String { 
     if printerName == "Never Has Toner" { 
         throw PrinterError.noToner 
     } 
     return "Job sent" 
 }

 do { 
     let printerResponse = try send(job: 1440, toPrinter: "Gutenberg") 
     print(printerResponse) 
 } catch PrinterError.onFire { 
     print("I'll just put this over here, with the rest of the fire.") 
 } catch let printerError as PrinterError { 
     print("Printer error: \(printerError).") 
 } catch { 
     print(error) 
 }

Adopt the Error protocol

Use 'throws' in function 
definition and to generate error

catch the errors



Revisiting value / reference types

• Common value types: 
• struct 
• enum 
• tuple 
• Array 
• Dictionary 
• String, Int, Bool, Int8, Int16, Int32, Int64, UInt, UInt8, 

UInt16, UInt32, UInt64, Float, Float80, Double, … 
• Common reference types: 

• class 
• NSObject
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Summary

• Value/Reference Types 
• Optionals 
• Constants and Variables 

• var and let 
• Automatic Type Detection 

• But can specify the types 
• Internal/External names for functions
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Value/reference copy playground
• Here’s the playground content I was using in lectures. 

(Intended for copy/paste, rather than readability here!)
import Foundation 

var a:Int = 1 
var b:Int = a 
a = 2 
print("\(a),\(b)") 

var c:String = "blah" 
var d:String = c 
c = "blob" 
print("\(c),\(d)") 

class ClassCopyTest { var t:Int = 0 } 
var e:ClassCopyTest = ClassCopyTest() 
var f:ClassCopyTest = e 
e.t = 1 
print("\(e),\(f)") 

struct StructCopyTest { var t:Int = 0 } 
var g:StructCopyTest = StructCopyTest() 
var h:StructCopyTest = g 
g.t = 1 
print("\(g),\(h)")


