


User Interfaces

Lecture 20

Bindings

Hamza Bennani
hamza@hamzabennani.com

September 4, 2018



Binding

I Often you want a GUI to directly control an instance
variable

I You want the controller to bind the view data to the model
data

I This can be done using target/action and outlets, or . . .
I You can use Cocoa bindings to generate all the "glue code"

automatically

1

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



key-Value Coding

I Key-Value Coding (KVC) allows us to get and set instance
variables using key strings

I To get a variable use valueForKey:
I To set a variable use setValue:forKey:

I The key string is the same name as the instance variable
I (Think about the difference here: variable names are known

at compile time, but the string values are only known at
runtime.)

2

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



KVC

3

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



KVC

I NSObject implements Key-Value Coding
I It calls key-value compliant setters/getters:

I Key-value coding automatically wraps non-objects as
NSNumber or NSValue

I More of a concern for Objective-C than for Swift, which will
usually take care of things for you

I Key-Value Coding:
I Enables application scripting
I Underlies variable binding to GUI elements
I Can help you simplify your code

4

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Key Paths

I Key paths can be used to access instance variables
indirectly

I Key paths consist of keys separated by dots

5

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Binding

I Key-Value Coding allows you to get and set instance
variables in your model or view (This is half of the
controller glue code)

I You also need to know when something has changed (i.e.,
not by you)

6

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Key-Value Observing

I Key-Value Observing (KVO) allows notifications to be set
up when a variable (specified by a key string) changes

I To register an observer to be notified when an instance
variable of data changes, call the
addObserver:forKeyPath:options:context: method on the
data-holding object

I To get the notification, the observer object must implement
the method:

override func observeValue(forKeyPath keyPath: String?, of
object: Any?, change: [NSKeyValueChangeKey : Any]?,
context: UnsafeMutableRawPointer?)

7

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Key-Value Observing

8

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Key-Value Observing

9

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



KVO

I KVO also implemented at the NSObject level
I However, changes to the variable must occur via an

appropriate set accessor
I Objective-C, for single variable: setValue:

I For NSArray: setValue:forKey:
I For key path: setValue:forKeyPath:

I In Swift, use the dynamic keyword on properties
I Notifications can also be produced manually via

willChangeValueForKey: and didChangeValueForKey:

10

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



KVO

I Key-value observing notifications are not Notifications
(were NSNotifications)

I Not all classes allow key-value observing
I Only those that support the NSKeyValueCoding informal

protocol

11

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Advanced KVC Collections

I What if the instance variable is a collection?
I You can use key-value coding on a proxy

I For an indexed collection
I To get a proxy use mutableArrayValueForKey:
I The proxy provides methods: count:, objectAtIndex:,

insertObject:atIndex:, and removeObjectAtIndex:.
I For an unordered collection

I To get a proxy use mutableSetValueForKey:
I The proxy provides methods: count:, addObject:, and

removeObject:.

12

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Advanced KVC Collections

I For a class that inherits from NSObject with properties that
are single attributes, or a to-one relationship:

I KVC support is already provided by NSObject
I Ensure the variable in question has set<Name> setter and

<name> getter, where <name> is the variable name
I Otherwise, you must implement the methods from the

NSKeyValueCoding informal protocol
I To-one relationship: setValue:ForKey, valueForKey:,

validateValue:forKey:error:
I To-many relationship: dictionaryWithValuesForKey:,

mutableArrayValueForKey:,
mutableOrderedSetValueForKey:, mutableSetValueForKey:,
etc.

13

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Advanced KVC Collections

I You can use simple operators with key-value strings
I @avg, @count, @max, @min, @sum
I There are also operators for sets of objects
I @distinctUnionOfObjects, @unionOfObjects,

@distinctUnionOfArrays, @unionOfArrays,
@distinctUnionOfSets

14

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



Summary
In this lecture we learned how to bind data between MVC’s model and MVC’s
view:

I KVC - key value coding, ability to get a variable value at
runtime by referring to its name (encoded as a string)

I KVO - framework for notification of an object interested in
change in value of another object’s instance variable

I Binding - connecting of model data and view controls using
KVC and KVO (Note: above features are often from
NSObject)

15

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018



KVO

16

Hamza Bennani -*- COSC346 -*- Bindings -*- September 4, 2018


