
Classes and Objects
COSC346

Overview

• OO Concepts
• classes and objects
• instances, encapsulation, behaviours, state
• visibility

• Swift implementation
• Design Patterns

!2COSC346 Lecture 3, 2018

Description of OOP

1. Everything is an object
2. Objects perform computation by making requests of

each other by passing messages
3. Every object has its own memory, which consists of

other objects
4. Every object is an instance of a class. A class groups

similar objects.
5. The class is the repository for the behaviour

associated with an object.
6. Classes are organised into a singularly rooted tree

structure, called an inheritance hierarchy

!3COSC346 Lecture 3, 2018

Objects in real world

• An object is a thing
• A real-world example is a car

74COSC346 Lecture 3, 2018

Objects in real world

• Objects have properties
• You can act on objects
• Objects interact

75COSC346 Lecture 3, 2018

Plato’s Theory of Forms

• Objects that we see mimic
real Forms

• A Form is an idea, an abstract
concept that conveys the
essence of an object

• Example:
• What is the form of a “car”?
• How does a car you see on the

street correspond to its form?

!6COSC346 Lecture 3, 2018

The Treachery of Images (This is not a pipe) (1928-1929)
René Magritte

Class and Object

• A class is a specification of how the object is
to be built (essence of an object)

• An object is an instance of a class (a “real”
object...in computer memory)

78COSC346 Lecture 3, 2018

O
O

P

Class

• A class defines a type by specifying:
• What its state is composed of (its internal

variables and properties)?
• How it behaves (its methods)?

79COSC346 Lecture 3, 2018

O
O

P

Object instances

• An object instance is a particular
“realisation” of a given class
• Properties take on specific values
• Behaviour of a given object may depend on its state and properties
• Different instances can have different properties

710COSC346 Lecture 3, 2018

O
O

P

Object State

• Instance variables specify object’s state
• Some of this state is visible to the object user

(object properties) …
• … and some is not (internal state)

711COSC346 Lecture 3, 2018

O
O

P

O
O

P

Methods

• Methods are class specific functions that
define what the object does and how it
does it

712COSC346 Lecture 3, 2018

Methods

• Methods are class specific functions that
define what the object does and how it
does it

713COSC346 Lecture 3, 2018

O
O

P

Abstraction

• Knowledge of the inner workings of the
object is not required in order to use it

• It’s sufficient that user understands object’s
properties (visible state) and how to use it

714COSC346 Lecture 3, 2018

O
O

P

Encapsulation
• Internal state may not be directly visible to user, but interface

(methods) may be provided to allow user to modify the state
• Ability to control access to the inner state of the object

• Accessor methods:
• Setters – methods that allow writing to internal variables
• Getters – methods that allow reading of internal variables

715COSC346 Lecture 3, 2018

O
O

P

Visibility

• Works on the engine, so
that car is drivable

• Engine internals are hidden
away under the hood

• Does not need to
understand how the
engine works

• Does not need to look at
the engine

• Needs to use the interface
skilfully in order to control
the engine and drive

716COSC346 Lecture 3, 2018

Mechanic Driver

O
O

P

Visibility

• Works on the implementation
of the class, so that its object
is usable

• Class internals can be hidden
away

• Does not need to understand
details of the class internals

• Does not need to look at the
internals

• Needs to instantiate objects
of the class and use their
methods skilfully in order to
co produce desired program
logic

717COSC346 Lecture 3, 2018

Toolmaker Builder

O
O

P

Visibility

• Class creator can decide the degree of
visibility into its internals

• Access Control:
• Private – only visible from

within class implementation
(internal use)

• Public – visible to the
object user (internal and
external use)

718COSC346 Lecture 3, 2018

O
O

P

Interchangeability

• Ability to change inner working of an object
without affecting its interface and the code
depending upon it

719COSC346 Lecture 3, 2018

O
O

P

Interchangeability

• Ability to change inner working of an object
without affecting its interface and the code
depending upon it

720COSC346 Lecture 3, 2018

O
O

P

Interface and implementation O
O

P

• Interface—declaration of
what the object is and
what can be done to it

• Implementation—the
code that defines the
behaviour of the class
object

• In many languages class interface and
implementation are specified separately
(header and implementation files)

721COSC346 Lecture 3, 2018

class Complex {
 var real: Float
 var imag: Float

 var magnitude: Float {
 return real*real+imag*imag
 }

 var description: String {
 return "\(real)+\(imag)i"
 }

 init(real: Float, imag: Float) {
 self.real = real
 self.imag = imag
 }

 func add(complex x: Complex) {
 self.real += x.real
 self.imag += x.imag
 }
}

How to define a class

722COSC346 Lecture 3, 2018

Sw
iftClass name

Stored properties (instance
variables)

Initialisation
methods (must
exist and initialise
all store properties)

Computed properties
(methods that behave like
properties)

Method

class Complex {
 var real: Float
 var imag: Float

 var magnitude: Float {
 return real*real+imag*imag
 }

 var description: String {
 return "\(real)+\(imag)i"
 }

 init(real: Float, imag: Float) {
 self.real = real
 self.imag = imag
 }

 func add(complex x: Complex) {
 self.real += x.real
 self.imag += x.imag
 }
}

How to define a class

Sw
ift

• Swift doesn’t
separate interface
and implementation:
it’s all in one place

• Setters & getters can
be defined within
computed property

• The default setting
for access control
makes class internals
visible to all files in
the module/project

723COSC346 Lecture 3, 2018

How to create an object instance

724COSC346 Lecture 3, 2018

var m: Complex = Complex(real: 3.1, imag: -0.5)
var n: Complex = Complex(real: 1.0, imag: 2.3)

print("The magnitude of \(m.real)+\(m.imag)i is \(m.magnitude)")
print("The magnitude of \(n.description) is \(n.magnitude)")

print("(\(m.description))+(\(n.description))=", terminator: "")
m.add(complex:n)
print("\(m.description)")

Create two instances of Complex
objects with different internal
state

Stored properties

Computed properties

Invoke a method on ‘m’ with
‘n’ passed in as a parameter

Sw
ift

Design Patterns

• Reusable solution to a commonly
occurring problem

• Lies between a paradigm and an
algorithm

• First book appeared in 1994
• The "Gang of Four" (GoF)
• Language features make some

patterns unnecessary
• Can unnecessarily increase

complexity
USE WITH CAUTION!

!25COSC346 Lecture 3, 2018

O
O

P

Three types of patterns:
Creational, Behavioural,

Structural

Why design patterns?

• Knowing OOP basics does not automatically make
you a good OOP designer

• Patterns show you how to build systems with good
OO design qualities
• Patterns don’t give you code, but

general solutions to design problems
• Patterns aren’t invented, they’re

discovered
• Most patterns and principles address

issues of change in software
• Most patterns allow some part of a

system to vary independently of
other parts

726COSC346 Lecture 12, 2017

From Head First Design
patterns, O'Reilly Media

O
O

P

Algorithms versus design patterns

• An algorithm provides a set of step-by-step
instructions that can be described in pseudo-
code then implemented directly
• Euclid’s method for finding the greatest

common divisor of two numbers
• A design pattern describes a solution to a

common, but generic, problem
• It is like a meta-algorithm, or a generic approach
• It typically concerns interactions between

objects in OOP
• It must generally be re-implemented each time it

is used
• Algorithms are specific, design patterns are

general
727COSC346 Lecture 12, 2017

• Behaviour
• Access each element of a container in order

• Don't want to know details of the container
• Traversing a LinkedList and an Array should

look the same
Iterator Pattern

!28COSC346 Lecture 3, 2018

Pattern of the Day - Iterator

• Behaviour
• Access each element of a container in order

• Don't want to know details of the container
• Traversing a LinkedList and an Array should

look the same
Iterator Pattern

!29COSC346 Lecture 3, 2018

Pattern of the Day - Iterator

protocol Iterator{
 func next() -> Int
 func hasNext() -> Bool
}

class ListIterator:Iterator {
 var curr: ListNode?
 var cntr: ListContainer

 func next() -> Int {
 let val = self.curr?.val
 self.curr = self.curr?.next
 return val
 }
 func hasNext() -> Bool {
 return self.curr != nil
 }
}

class ArrayIterator:Iterator {
 var pos: Int
 var cntr: ArrayContainer

 func next() -> Int {
 let val = cntr.get(pos)
 pos += 1
 return val
 }
 func hasNext() -> Bool {
 return pos < cntr.size()
 }
}

let array = ArrayContainer([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
let list = ListContainer([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
var iter: Iterator

print("array iterator")
iter = array.getIterator()
while iter.hasNext() {
 print(iter.next())
}

print("list iterator")
iter = list.getIterator()
while iter.hasNext() {
 print(iter.next())
}

Sw
ift

To
ol

m
ak

er
Bu

ild
er

Pattern of the Day - Iterator

• Rendered obsolete by modern language
constructs

!31COSC346 Lecture 3, 2018

Pattern of the Day - Iterator

for item in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]{
 print(item)
}

class Novella {
 var name: String = ""
}

class Novellas {
 var novellas: [Novella] = []
}

class NovellasIterator: IteratorProtocol {
 private var current = 0
 private let novellas: [Novella]

 func next() -> Novella? {
 current += 1
 return novellas.count >= current ? novellas[current-1] : nil
 }
}

extension Novellas: Sequence {
 func makeIterator() -> NovellasIterator {
 return NovellasIterator(novellas: novellas)
 }
}

let greatNovellas = Novellas([Novella("foo"), Novella("bar")])
for novella in greatNovellas {
 print("I've read: \(novella.name)")
}

https://github.com/ochococo/Design-Patterns-In-Swift/blob/master/source/behavioral/iterator.swift

I've omitted the
initialisers!

Summary?

!33COSC346 Lecture 3, 2018

Summary?

• Classes and Objects
• Classes - Blueprint
• Objects - Realisation

• State vs Behaviour
• Visibility
• Toolmaker vs Builder

• Interchangeability
• Interface and Implementation
• Design Pattern
• Iterator

!34COSC346 Lecture 3, 2018

