
Working with classes
and objects

COSC346

!2COSC346 Lecture 1, 2018

SEMESTER TWO 2018
Are you
•proactive, friendly and keen to contribute to your learning environment?
•a great communicator who can represent your peers?

What’s in it for you?
•Kudos & Karma
•Great friendships
•Access to FREE professional training opportunities and support
•A feed (or three)
•A reference letter from OUSA for your CV
•Invitations to Class Rep social events throughout the year

Don’t wait any longer… sign up now!
 Talk to your lecturer or email:

 classrep@ousa.org.nz

Initialisation

• An object should be self-contained: independent and self-
sufficient
• Should allocate resources (memory) required for its operation
• Should initialise its member variables to appropriate values

• Constructors
• These are special methods invoked upon object creation
• The place where the internal state of the object can be initialised
• Typically these methods carry the same name as the class
• Can take parameters, which allow user-defined initialisation

• Note: Destructors are methods that are automatically
invoked when object is released from the memory—more
about this when we discuss memory management.

53COSC346 Lecture 4, 2018

O
O

P

Initialisation

• In Swift constructors are
referred to as initialisers

• Any class that uses stored
properties must
implement at least one
initialiser
• Compiler will give an error if

a property is not initialised

• An object instance must
be created through an
initialiser
• Compiler will not allow the

use of an object that hasn’t
been initialised

54COSC346 Lecture 4, 2018

Sw
ift

class Complex {
 var real: Float
 var imag: Float

 init() {
 self.real = 0.0
 self.imag = 0.0
 }
}

var x: Complex
x = Complex()

Initialiser is invoked
with the name of the
class followed by
initialiser arguments
in parentheses

Initialisation – multiple initialisers

• There can be more
than one initialiser

• The arguments in the
initialisation call
determine which
initialiser is used

• The arguments (if
there are any) must
be named in the
initialisation call

55COSC346 Lecture 4, 2018

Sw
ift

class Complex {
 var real: Float
 var imag: Float

 init() {
 self.real = 0.0
 self.imag = 0.0
 }

 init(real: Float, imag: Float) {
 self.real = real
 self.imag = imag
 }

}

var x: Complex
x = Complex()
x = Complex(real: 1.0, imag: 2.3)

Initialisation – multiple initialisers

• Initialiser arguments
can be declared with
a default value: these
arguments can be
omitted from
initialisation call

56COSC346 Lecture 4, 2018

Sw
ift

class Complex {
 var real: Float
 var imag: Float

 init() {
 self.real = 0.0
 self.imag = 0.0
 }

 init(real: Float, imag: Float = 0.0) {
 self.real = real
 self.imag = imag
 }

}

var x: Complex
x = Complex()
x = Complex(real: 1.0, imag: 2.3)
var y: Complex = Complex(real: -4.4)

Designated initialiser

• Often classes will have several available
initialisation methods

• The designated initialiser is a method that is
eventually invoked by all other initialisation
methods

• Use of a designated initialiser lowers the
chance of initialisation errors

57COSC346 Lecture 4, 2018

O
O

P

class Complex {
 var real: Float
 var imag: Float

 convenience init() {
 self.init(real: 0.0)
 }

 init(real: Float, imag: Float = 0.0) {
 self.real = real
 self.imag = imag
 }

}

var x: Complex
x = Complex()
x = Complex(real: 1.0, imag: 2.3)
var y: Complex = Complex(real: -4.4)

Initialisation - multiple initialisers

• In Swift an initialiser
that doesn’t write to
properties directly,
but initialises them
through another
initialiser is referred to
as a convenience
initialiser

58COSC346 Lecture 4, 2018

Sw
ift

Designated

Convenience

Member/internal variables

• Member/internal variables are the variables
encapsulated inside a class. There are two types of
member variables:
• Instance variables—each object instance carries a dedicated

copy of these variables, and so values can different from
object to object

• Class variables—shared by all objects of a given class: change
in value affects every instance

59COSC346 Lecture 4, 2018

O
O

P

x=2

x=3

x=2

 Class scope

Object
instance
scope

Object
instance
scope

Member/Internal Variables

• Instance variables:
• Stored properties—their values may differ for different object instances of

the class
• Class variables:

• Static stored properties—values are shared by all objects of a given class

510COSC346 Lecture 4, 2018

Sw
ift

class ClassA {
 static var firstTime: Bool = true; //Class variable
 var someProperty: Any //Instance variable

 init(x: Any) {
 if(ClassA.firstTime) {
 //Do something that can be done
 //only once, regardless how many
 //objects of this class are created
 ClassA.firstTime = false
 }
 self.someProperty = x;
 }
}

COSC346

Methods
• Instance methods

• Methods invoked on class instance
• Can access instance variables for read/write

• Class methods
• Methods that can be used without creating an instance of the class
• Cannot access instance variables

511COSC346 Lecture 4, 2018

class Fraction {
 var num: Int;
 var den: Int;

 init(num : Int, den : Int) {
 self.num = num
 self.den = den
 }

 func add(_ f: Fraction) {
 self.num = self.num*f.den + self.den*f.num
 self.den = self.den*f.den
 }

 static func add(_ f1: Fraction, to f2: Fraction) -> Fraction {
 return Fraction (num: f1.num*f2.den + f1.den*f2.num,
 den: f1.den*f2.den)
 }
}

var u = Fraction(num: 2, den: 3)
var v = Fraction(num: -7, den: 9)

u.add(v)

var f: Fraction
f = Fraction.add(u, to: v)

Operation on an
instance

Operation on the class

Sw
ift

Access Control

Generally in OOP access control is class based:

• Private methods and member variables
• Accessible only from the code within class definition
• Visible to the programmer writing the class code, not to the

programmer using objects of that class

• Protected methods and member variables
• A bit like private, except visible to derived classes—more

about this in the lecture on inheritance

• Public methods and member variables
• Accessible from anywhere
• Visible to the programmer writing the class as well as the

programmer using objects of that class

512COSC346 Lecture 4, 2018

O
O

P

More
restri-
ctive

Less
restri-
ctive

Access Control

In Swift access control is file/module based:

• Private methods and member variables
• Accessible only from the file where the class has been defined
• Visible to the programmer editing the class source file, even if working

with object instances outside the class definition
• Fileprivate methods and member variables

• Accessible only from the module where it's defined
• Internal methods and member variables (the default)

• Accessible from any file that is part of the module where the class is
defined where the class has been defined

• Visible in any source file to the programmer writing within the module
(project) where the class is defined

• Once the module is distributed as a framework, and included in
another project, the internal methods and variables are not
accessible to the programmer using objects of that class

• Open/Public methods and member variables
• Accessible from any source file
• Visible to the programmer writing the class as well as the programmer

using objects of that class in any source file of the project

513COSC346 Lecture 4, 2018

Sw
ift

More
restri-
ctive

Less
restri-
ctive

Open vs Public

Open access applies only to classes and class members, and it differs from
public access as follows:

• Classes with public access, or any more restrictive access level, can be

subclassed only within the module where they’re defined.

• Class members with public access, or any more restrictive access level,

can be overridden by subclasses only within the module where they’re
defined.

• Open classes can be subclassed within the module where they’re defined,
and within any module that imports the module where they’re defined.

• Open class members can be overridden by subclasses within the module
where they’re defined, and within any module that imports the module
where they’re defined.

!14COSC346 Lecture 4, 2018

https://docs.swift.org/swift-book/LanguageGuide/AccessControl.html

Accessor methods

• Sometime it makes sense to control the access to
object’s state

• The state of the object can be made private, so that
the user of the object can’t access it directly

• Setter & getter methods
are the interface to the
state of the object
• These methods can

check for indexes out of
bounds, invalid values,
etc., to ensure that state
doesn’t get corrupted

515

O
O

P

http://www.evinw.com

COSC346 Lecture 4, 2018

Accessor methods

Sw
iftclass Fraction {

 private var _numHidden: Int = 0
 private var _denHidden: Int = 1

 init(num : Int, den : Int) {
 self._numHidden = num; self._denHidden = den
 }

 func getNum() -> Int {
 return _numHidden
 }

 func setNum(_ newValue: Int) {
 _numHidden = newValue
 }

 func getDen() -> Int {
 return _denHidden
 }

 func setDen(_ newValue: Int) {
 assert(newValue != 0, "Can't set den to 0!")
 _denHidden = newValue
 }
}
var f: Fraction = Fraction(num: 1, den: 3)
f.setNum(2)
f.setDen(3)
print("f=\(f.getNum())/\(f.getDen())")

• Generic setters
and getters

516COSC346 Lecture 4, 2018

Private
state

Getter and
setter for
_numHidden

Getter and setter
for _denHidden

Accessor methods

Sw
iftclass Fraction {

 private var _numHidden: Int = 0;
 private var _denHidden: Int = 1;

 init(num : Int, den : Int) {
 self._numHidden = num; self._denHidden = den
 }

 var num: Int {
 get {
 return _numHidden
 }
 set(newValue) {
 _numHidden = newValue
 }
 }

 var den: Int {
 get {
 return self._denHidden
 }
 set(newValue) {
 assert(newValue != 0, "Can't set den to 0!")
 self._denHidden = newValue
 }
 }
}
var f: Fraction = Fraction(num: 1, den: 3)
f.num = 2
f.den = 3
print("f=\(f.num)/\(f.den)")

• Swift setters and
getters as
computed
properties

517

Private
state

Getter and setter for
_numHidden

Getter and
setter for
_denHidden

Overloading

• Same method
name but different
implementations
for different
parameter
signatures

• Constructor
overloading is
probably the most
ubiquitous use of
overloading

518COSC346 Lecture 4, 2018

O
O

P

class Fraction {
 var num: Int
 var den: Int

 init(num: Int, den: Int) {
 self.num = num
 self.den = den
 }

 convenience init(string: String) {
 var num: Int = 0;
 var den: Int = 1;
 var tokens = string.components(separatedBy:"/")

 if tokens.count > 0 {
 if let n = Int(tokens[0]) {
 num = n
 }
 }

 if tokens.count > 1 {
 if let d = Int(tokens[1]) {
 den = d
 }
 }
 self.init(num: num, den: den)
 }
}

var x: Fraction = Fraction(num: 1, den: 2)
var y: Fraction = Fraction(string: "4/3")

Sw
ift

Object reference

• What happens when you create an object
instance?

• First, you create an object reference—if it’s not
initialised it doesn’t point anywhere

• Then, you create an object instance and set the
reference value so it points to the address where the
object is located

519COSC346 Lecture 4, 2018

O
O

P

var f: Fraction

f = Fraction(num: 1, den: 3)

00000000001079e0

f

f

Sw
ift

Object reference

• What happens when you assign an object reference
to another reference?

• Two references point to the same object instance:
operation through either reference changes the
state of the object

520COSC346 Lecture 4, 2018

O
O

P

var y: Fraction = f

00000000001079e0f

00000000001079e0y

Sw
ift

Copying objects

• Create a new object instance and copy the values of all
instance variables

• Two references now point to different object instances:
operation through one reference does not affect the
object associated with the other reference

521COSC346 Lecture 4, 2018

O
O

P

 var y: Fraction = f.copy()

00000000001079e0f

0000000000108fc0y

Sw
ift

Copying objects

• Create a new object instance and copy the values
of all instance variables

522COSC346 Lecture 4, 2018

O
O

P

class Fraction {
 private var num: Int;
 private var den: Int;

 init(num : Int, den : Int) {
 self.num = num
 self.den = den
 }

 func copy() -> Fraction {
 return Fraction(num: self.num, den: self.den);
 }
}

var f: Fraction = Fraction(num: 1, den: 3)
var y = f.copy()

Sw
ift

Copying objects

• What if an instance variable is an object?
• Shallow copy—copy its reference
• Deep copy—create new instance of the internal

object and copy the state

523COSC346 Lecture 4, 2018

O
O

P

Comparing object references

• Do you mean to check whether two references
point to the same object instance?

524COSC346 Lecture 4, 2018

O
O

P
Sw

ift

var f: Fraction
var y: Fraction

.

.

.

if y === f {
 print("y and f refer to the same object")
}

Comparing objects’ values

• What does it mean for different object instances to
be equal?

525COSC346 Lecture 4, 2018

O
O

P
Sw

ift

func == (left: Fraction, right: Fraction) -> Bool {
 if (left.num == right.num) &&
 (left.den == right.den) {
 return true
 } else {
 return false
 }
}

var f: Fraction
var y: Fraction

.

.

.

if y == f {
 print("Objects are the same")
}

Comparing objects by value

• Can the objects be ordered in some fashion?

526COSC346 Lecture 4, 2018

O
O

P
Sw

ift

func < (left: Fraction, right: Fraction) -> Bool {
 if left.decimal < right.decimal {
 return true
 } else {
 return false
 }
}

var f: Fraction
var y: Fraction

.

.

.

if y < f {
 print("y is smaller than f")
} else {
 print("f is smaller than y")
}

Computed
property that
calculates a float
value from
Fraction’s state

Mutable and immutable

• Mutable object—internal state can be modified at
any point

• Immutable object—internal state does not change
after initialisation: a read only object

527COSC346 Lecture 4, 2018

O
O

P

Mutable and immutable
• Declaring stored properties as constant makes the class

objects immutable
• Properties can only be set once in an initialiser

Sw
ift

class Fraction {
 let num: Int;
 let den: Int;

 init(num : Int, den : Int) {
 self.num = num
 self.den = den
 }

 func copy() -> Fraction {
 return Fraction(num: self.num, den: self.den);
 }

 static func add(f1: Fraction, to f2: Fraction) -> Fraction {
 return Fraction (num: f1.num*f2.den + f1.den*f2.num,
 den: f1.den*f2.den)
 }
}

var f: Fraction = Fraction(num: 1, den: 3)
var y = f.copy()
y.num = 2
print ("f=\(f.num)/\(f.den)")

 Cannot assign to ‘num’ in ‘y’!

Stored properties
declared as constants

The only place where the
stored properties can be set

Pattern of the Day - Singleton

• Creational
• Only allow creation of a limited number of

instances of a class (usually just one)

• Often abused/misused
• Considered to be an anti-pattern

What OOP principle does the singleton break?

!29COSC346 Lecture 4, 2018

530

public final class Singleton {
 private static final Singleton INSTANCE = new Singleton();

 private Singleton() {}

 public static Singleton getInstance() {
 return INSTANCE;
 }
}

Ja
va

public final class Singleton {
 private static Singleton instance = null;

 private Singleton() {}

 public static Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

531

Sw
ift

class DeathStarSuperlaser {

 static let sharedInstance = DeathStarSuperlaser()

 private init() {
 // Private initialization to ensure just one

// instance is created.
 }
}

let laser = DeathStarSuperlaser.sharedInstance

https://github.com/ochococo/Design-Patterns-In-Swift/blob/master/source/creational/singleton.swift

Summary?

!32COSC346 Lecture 4, 2018

Summary

• Instantiation
• Access Control
• Overloading
• Object References and Copying
• Deep vs Shallow

• Immutability
• Design Pattern - Singleton

!33COSC346 Lecture 4, 2018

